zoukankan      html  css  js  c++  java
  • Scikit-Learn模块学习笔记——数据集模块datasets

    scikit-learn 的 datasets 模块包含测试数据相关函数,主要包括三类:

    • datasets.load_*():获取小规模数据集。数据包含在 datasets 里
    • datasets.fetch_*():获取大规模数据集。需要从网络上下载,函数的第一个参数是 data_home,表示数据集下载的目录,默认是 ~/scikit_learn_data/。要修改默认目录,可以修改环境变量SCIKIT_LEARN_DATA。数据集目录可以通过datasets.get_data_home()获取。clear_data_home(data_home=None)删除所有下载数据。
    • datasets.make_*():本地生成数据集。

    数据集格式

    • tuple(X, y)
      本地生成数据函数 make_*load_svmlight_* 返回的数据是 tuple(X, y) 格式

    • Bunch
      load_*fetch_* 函数返回的数据类型是 datasets.base.Bunch,本质上是一个 dict,它的键值对可用通过对象的属性方式访问。主要包含以下属性:

      • data:特征数据数组,是 n_samples * n_features 的二维 numpy.ndarray 数组
      • target:标签数组,是 n_samples 的一维 numpy.ndarray 数组
      • DESCR:数据描述
      • feature_names:特征名
      • target_names:标签名

    获取小数据集

    • load_boston():
      房屋特征-房价,用于regression
    • load_diabetes():
      糖尿病数据,用于 regression
    • load_linnerud():
      Linnerud数据集,有多个标签,用于 multilabel regression
    • load_iris():
      鸢尾花特征和类别,用于classification
    • load_digits([n_class]):
      手写数字识别
    • load_sample_images():
      载入图片数据集,共两张图
    • load_sample_image(name):
      载入图片数据集中的一张图
    • load_files(container_path, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error='strict', random_state=0):
      从本地目录获取文本数据,并根据二级目录做分类

    获取大数据集

    • load_mlcomp(name_or_id, set_='raw', mlcomp_root=None, **kwargs):
      http://mlcomp.org/ 上下载数据集
    • fetch_california_housing(data_home=None, download_if_missing=True)
    • fetch_olivetti_faces(data_home=None, shuffle=False, random_state=0, download_if_missing=True):
      Olivetti 脸部图片数据集
    • fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195, None), slice(78, 172, None)), download_if_missing=True):
    • fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195, None), slice(78, 172, None)), download_if_missing=True):
      Labeled Faces in the Wild (LFW) 数据集,参考 LFW
    • fetch_20newsgroups(data_home=None, subset='train', categories=None, shuffle=True, random_state=42, remove=(), download_if_missing=True)
    • fetch_20newsgroups_vectorized(subset='train', remove=(), data_home=None):
      新闻分类数据集,数据集包含 ‘train’ 部分和 ‘test’ 部分。
    • fetch_rcv1(data_home=None, subset='all', download_if_missing=True, random_state=None, shuffle=False):
      路透社新闻语聊数据集
    • fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None):
      从 mldata.org 中下载数据集。参考 PASCAL network
    • mldata_filename(dataname):
      将 mldata 的数据集名转换为下载的数据文件名
    • fetch_covtype(data_home=None, download_if_missing=True, random_state=None, shuffle=False)
      Forest covertypes 数据集

    本地生成数据

    回归(regression)

    • make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None)
    • make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None)
    • make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None)
    • make_friedman2(n_samples=100, noise=0.0, random_state=None)
    • make_friedman3(n_samples=100, noise=0.0, random_state=None)

    分类(classification)

    单标签

    • make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None):
      生成 classification 数据集。包含所有的设置,可以包含噪声,偏斜的数据集
    • make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None):
      生成 classification 数据集。数据服从高斯分布
      centers 可以是整数,表示中心点个数,或者用列表给出每个中心点的特征值
      cluster_std 可以是浮点数或浮点数列表
      random_state 可以是整数,表示随机起始 seed,或者 RandomState 对象,默认使用 np.random
    • make_gaussian_quantiles(mean=None, cov=1.0, n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None):
    • make_hastie_10_2(n_samples=12000, random_state=None):
    • make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=0.8):
    • make_moons(n_samples=100, shuffle=True, noise=None, random_state=None):

    多标签

    • make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None):
      生成 multilabel classification 数据集。

    双聚类(bicluster)

    • make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None):
    • make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None):

    流形学习(manifold learning)

    • make_s_curve(n_samples=100, noise=0.0, random_state=None)
    • make_swiss_roll(n_samples=100, noise=0.0, random_state=None)、

    可降维(decomposition)数据

    • make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None)
    • make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None)
    • make_spd_matrix(n_dim, random_state=None)
    • make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=0.1, largest_coef=0.9, random_state=None)

    处理 svmlight / libsvm 格式数据

    提供 svmlight / libsvm 格式数据的导入或导出。

    • load_svmlight_file(f, n_features=None, dtype=numpy.float64, multilabel=False, zero_based='auto', query_id=False):
      返回 (X, y, [query_id]),其中 X 是 scipy.sparse matrix,y 是 numpy.ndarray
    • load_svmlight_files(files, n_features=None, dtype=numpy.float64, multilabel=False, zero_based='auto', query_id=False)
    • dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None, multilabel=False)

    其他数据集网站

    UCI Machine Learning Repository:http://archive.ics.uci.edu/ml/datasets.html
    UCI KDD:http://kdd.ics.uci.edu/summary.data.type.html
    Kaggle:https://www.kaggle.com/datasets

    参考

    官方datasets包文档:http://scikit-learn.org/stable/datasets/index.html
    API列表:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets

  • 相关阅读:
    [HDOJ4417]Super Mario(归并树)
    [POJ2104] K-th Number(归并树,二分)
    2017北理校赛G题 人民的名义(FFT)
    [CF762C] Two Strings(预处理,二分答案)
    [CF798D] Mike and distribution(贪心,鸽笼原理,随机)
    [CF798C] Mike and gcd problem(规律,gcd)
    2017北理校赛H题 青蛙过河(线段树, dp, 离散化)
    [CF798B] Mike and strings(暴力)
    [CF798A] Mike and palindrome(水题,trick)
    [CCPC2017]湘潭邀请赛
  • 原文地址:https://www.cnblogs.com/zhuyuanhao/p/5383628.html
Copyright © 2011-2022 走看看