zoukankan      html  css  js  c++  java
  • 【存档】缺省源

    主要内容(常用)

    现在常用的几个缺省源,包括:

    • 快读
    • 最大最小值
    • 带模加法乘法(函数打包)
    • 线性筛 + (varphi) 函数
    • 普通 (gcd)(循环)、扩展 (gcd)(递归)
    • 龟速乘、快速幂
    • 乘法逆元
    • 组合数

    快读 + 最大最小值

    #include <bits/stdc++.h>
    #define LL long long
    
    const int Maxn = /**/;
    const LL Mod = /**/;
    
    namespace Basic {
    	template <typename Temp>
    	inline void read(Temp & res) {
    		Temp fh = 1; res = 0; char ch = getchar();
    		for(; !isdigit(ch); ch = getchar()) if(ch == '-') fh = -1;
    		for(; isdigit(ch); ch = getchar()) res = (res << 3) + (res << 1) + (ch ^ '0');
    		res = res * fh;
    	}
    	template <typename Temp> inline void Checkmax(Temp & num, Temp comp) {if(comp > num) num = comp;}
    	template <typename Temp> inline void Checkmin(Temp & num, Temp comp) {if(comp < num) num = comp;}
    }
    

    四则运算

    inline LL add(LL A, LL B) {return A + B > Mod ? A + B - Mod : A + B;}
    inline LL mul(LL A, LL B) {return A * B % Mod;}
    
    inline LL slowmul(LL A, LL B) {LL res = 0; for(; B; B >>= 1, A = add(A, A)) if(B & 1) res = add(res, A); return res;}
    inline LL qpow(LL A, LL B) {LL res = 1; for(; B; B >>= 1, A = mul(A, A)) if(B & 1) res = mul(res, A); return res;}
    
    inline LL Inv(LL A) {return qpow(A, Mod - 2);}
    

    扩展欧几里得

    inline LL gcd_(LL A, LL B) {LL C; while(B) C = B, B = A % B, A = C; return A;}
    LL gcd(LL A, LL B, LL & X, LL & Y) {
    	if(B == 0) {X = 1, Y = 0; return A;}
    	LL res = gcd(B, A % B, X, Y);
    	LL temp = Y; Y = X - A / B * Y; X = temp;
    	return res;
    }
    

    线性筛 + (varphi) 函数

    bool isprime[MAXN];
    int prime[MAXN], cnt_prime = 0;
    LL phi[MAXN];
    
    inline void Euler(int N) {
    	phi[1] = 1;
    	for(register int i = 2; i <= N; ++i) {
    		if(!isprime[i]) prime[++cnt_prime] = i, phi[i] = i - 1;
    		for(register int j = 1; (j <= cnt_prime) && (i * prime[j] <= N); ++j) {
    			isprime[i * prime[j]] = 1;
    			phi[i * prime[j]] = phi[i] * (prime[j] - (i % prime[j] != 0));
    		}
    	}
    }
    

    逆元和组合数

    LL inv[MAXN];
    LL invf[MAXN];
    LL func[MAXN];
    
    inline void init_inv(int N) {
    	func[0] = 1;
    	for(register int i = 1; i <= N; ++i) func[i] = mul(func[i - 1], (LL)i);
    	invf[N] = Inv(func[N]);
    	for(register int i = N; i >= 0; --i) {
    		if(i ^ N) invf[i] = mul(invf[i + 1], (LL)(i + 1));
    		if(i) inv[i] = mul(invf[i], func[i - 1]);
    	}
    }
    
    inline LL choose(int N, int M) {if(N < M) return 0ll; return mul(mul(func[N], invf[M]), invf[N - M]);}
    

    主要内容(其他)

    不常用的:

    • 分数加运算,乘运算
    • 分数判断大小的逻辑运算

    分数运算

    struct fraction {
    	LL Numerator, Denominator;
    };
    
    namespace fraction_calculation {
    	fraction operator + (fraction A, fraction B) {
    		fraction C;
    		C.Denominator = lcm(A.Denominator, B.Denominator);
    		C.Numerator = A.Numerator * (C.Denominator / A.Denominator) + B.Numerator * (C.Denominator / B.Denominator);
    		LL F = gcd(C.Numerator, C.Denominator);
    		C.Denominator /= F; C.Numerator /= F;
    		return C;
    	}
    	fraction operator * (fraction A, fraction B) {LL F1 = gcd(A.Denominator, B.Numerator), F2 = gcd(A.Numerator, B.Denominator); return (fraction){A.Numerator / F2 * B.Numerator / F1, A.Denominator / F1 * B.Denominator / F2};}
    	bool operator < (fraction A, fraction B) {LL F = lcm(A.Denominator, B.Denominator); return A.Numerator * F / A.Denominator < B.Numerator * F / B.Denominator;}
    	bool operator == (fraction A, fraction B) {return (A.Denominator == B.Denominator) && (A.Numerator == B.Numerator);}
    	bool operator <= (fraction A, fraction B) {return (A < B) || (A == B);}
    }
    
  • 相关阅读:
    nginx 添加response响应头
    2018年 js 简易控制滚动条滚动的简单方法
    handsontable 常用 配置项 笔记
    使用react-handsontable
    node 常用模块及方法fs,url,http,path
    POST application/json 适用于传递多层的json
    react 子元素修改父元素值的一个偏方,虽然简单,但是不建议用,
    mysql 连接出错 'mysqladmin flush-hosts'
    solr7.3.1定时增量索引
    mysql8修改密码加密方式
  • 原文地址:https://www.cnblogs.com/zimujun/p/14127865.html
Copyright © 2011-2022 走看看