zoukankan      html  css  js  c++  java
  • 洛谷 P3704 SDOI2017 数字表格

    题意:

    给定两个整数 (n, m),求:

    [prod_{i = 1} ^ n prod_{j = 1} ^ m operatorname{Fib}_{gcdleft(n, m ight)} ]

    其中 (operatorname{Fib}_n) 表示斐波那契数列的第 (n) 项,斐波那契数列按照如下方式递归定义:

    [egin{equation} operatorname{Fib}_n = egin{cases} 1 & n = 1 ext{or} n = 2\ operatorname{Fib}_{n - 2} + operatorname{Fib}_{n - 1} & ext{otherwise}\ end{cases} end{equation} ]

    正文

    开始推导!

    老套路,先枚举 (gcdleft(i, j ight)), 设 (d = gcdleft( i, j ight))

    则考虑对于每个可行的 (d),对应的 (operatorname{Fib}_d) 被乘了多少次。

    显然是:

    [sum_{i = 1} ^ n sum_{j = 1} ^ m [gcdleft(i, j ight) = d]\ = sum_{i = 1} ^ {lfloorfrac{n}{d} floor} sum_{j = 1} ^ {lfloorfrac{m}{d} floor} [gcdleft(i, j ight) = 1]\ = sum_{i = 1} ^ {lfloorfrac{n}{d} floor} sum_{j = 1} ^ {lfloorfrac{m}{d} floor} sum_{t|gcdleft(i, j ight)} mu left(t ight)\ = sum_{t = 1} ^ {lfloorfrac{min{n, m}}{d} floor} mu left(t ight) cdot lfloorfrac{n}{dt} floor cdot lfloorfrac{m}{dt} floor ]

    次。

    即:

    [ ext{原式} = prod_{d = 1} ^ {min{n, m}} operatorname{Fib}_d^{(sum_{t = 1} ^ {lfloorfrac{min{n, m}}{d} floor} mu left(t ight) cdot lfloorfrac{n}{dt} floor cdot lfloorfrac{m}{dt} floor)} ]

    换元。设 (T = dt),则有:

    [ ext{原式} = prod_{d = 1} ^ {min{n, m}} operatorname{Fib}_d^{(sum_{t = 1} ^ {lfloorfrac{min{n, m}}{d} floor} mu left(frac{T}{d} ight) cdot lfloorfrac{n}{T} floor cdot lfloorfrac{m}{T} floor)}\ = prod_{d = 1} ^ {min{n, m}} (prod_{t = 1} ^ {lfloorfrac{min{n, m}}{d} floor} operatorname{Fib}_d^{mu left(frac{T}{d} ight)}) ^ {lfloorfrac{n}{T} floor cdot lfloorfrac{m}{T} floor}\ = prod_{T = 1} ^ {min{n, m}} (prod_{d | T} operatorname{Fib}_d ^ {mu left(frac{T}{d} ight)})^{lfloorfrac{n}{T} floor cdot lfloorfrac{m}{T} floor}]

    对于每个 (T), 预处理:

    [prod_{d | T} operatorname{Fib}_d ^ {mu left(frac{T}{d} ight)} ]

    然后整除分块求解即可。

  • 相关阅读:
    简明Python3教程 12.问题解决
    简明Python3教程 11.数据结构
    【SPOJ 694】Distinct Substrings
    【codeforces Manthan, Codefest 17 C】Helga Hufflepuff's Cup
    【CF Manthan, Codefest 17 B】Marvolo Gaunt's Ring
    【CF Manthan, Codefest 17 A】Tom Riddle's Diary
    【SPOJ 220】 PHRASES
    【POJ 3261】Milk Patterns
    【POJ 3294】Life Forms
    【POJ 1226】Substrings
  • 原文地址:https://www.cnblogs.com/zimujun/p/14348299.html
Copyright © 2011-2022 走看看