zoukankan      html  css  js  c++  java
  • 最小最大堆

     思动博客


    //最小最大堆的定义,一颗完全二叉树,根节点为最小层,最小层和最大层交替出现,如果x为最小层的节点,那么他就是以x为根节点的二叉树

    的最小节点,如果x为最大层的节点,那么他就是以x为根节点的二叉树的最大节点

    //支持双端队列的实现(1:能够插入任意一个值 2:能够删除最大值 3:能够删除最小值)

    //实现从节点1开始,0舍弃

    /*

    * 2009/06/03 By xylh

    * */

    #include <stdio.h>

    #include <stdlib.h>

    #define MAXSIZE 1000

    struct element {

            int key;

    };

    element heap[MAXSIZE];

    //判断节点所在是最大还是最小层,最小层返回true

    bool level(int i)

    {

        double k = log(i)/log(2);

        if((int)k%2 ==0) return true;

        else return false;

    }

    //在最大层向上追溯

    void max_verify(element heap[], int n, element item)

    {

            int i = n;

            int parent = n/4;

            while(parent) {

                    if(heap[parent].key < item.key) {

                            heap[i] = heap[parent];

                            i = parent;

                            parent = parent/4;

                    } else {

                            break;

                    }

            }

            heap[i] = item;

    }

    void min_verify(element heap[], int n, element item)

    {

            int i = n;

            int parent = n/4;

            while(parent) {

                    if(heap[parent].key > item.key) {

                            heap[i] = heap[parent];

                            i = parent;

                            parent = parent/4;

                    } else {

                            break;

                    }

            }

            heap[i] = item;

    }

    void insert(element heap[], int *n, element item)

    {

            (*n)++;

            if(*n == MAXSIZE) {

                    printf("heap is full\n");

                    exit(1);

            }

            if(*n == 1) {

                    heap[*n].key = item.key;

                    return;

            }

            int parent = *n/2;

            switch(level(parent)) {

            case true:

                    if(heap[parent].key > item.key) {

                            heap[*n] = heap[parent];

                            min_verify(heap, parent, item);

                    } else {

                            max_verify(heap, *n, item);

                    }

                    break;

            case false:

                    if(heap[parent].key < item.key) {

                            heap[*n] = heap[parent];

                            max_verify(heap, parent, item);

                    } else {

                            min_verify(heap, *n, item);

                    }

                    break;

            }

    }

    //寻找子节点和后序节点中最小的节点

    int min_grand_child(element heap[], int n, int i)

    {

            int min = 2*i;

            int k[5] = {2*i+1, 4*i, 4*i+1, 4*i+2, 4*i+3};

            for(int j=0; k[j]<=n&&j<=4; ++j) {

                    if(heap[k[j]].key < heap[min].key)

                            min = k[j];

            }

            return min;

    }

    element del_min(element heap[], int *n)

    {

            if(*n < 1) {

                    printf("heap is empty\n");

                    exit(1);

            }

            if(*n == 1) return heap[(*n)--];//case 1

            element item = heap[(*n)--];

            heap[0].key = heap[1].key;

            int k, i, last = (*n)/2, parent;

            for(i=1; i<=last; ) {

                    k = min_grand_child(heap, *n, i);

                    if(item.key <= heap[k].key) break;//case 2(a)

                    heap[i] = heap[k];

                    if(k <= 2*i+1) {//case 2(b)

                            i = k;

                            break;

                    }

                    parent = k/2;//case 2(c)

                    if(item.key > heap[parent].key) {

                            element temp = item;

                            item = heap[parent];

                            heap[parent] = temp;

                    }

                    i = k;

            }

            heap[i] = item;

            return heap[0];

    }

    element del_max(element heap[], int *n)

    {

    }

    int main()

    {

            int n = 0;

            for(int i=1; i<=10; ++i) {

                    element item;

                    item.key = i;

                    insert(heap, &n, item);

            }

            del_min(heap, &n);

            for(int i=1; i<=n; ++i) {

                    printf("%d ", heap[i].key);

            }

            printf("\n");

            return 0;

    }

    struct heap{
        int size;
        int a[11000];
        heap(){size=0;}
        void insert(int x){
             int p;
             for(p=++size;p>1&&a[p>>1]>x;a[p]=a[p>>1],p>>=1);
             a[p]=x;
             }
        void pop(int &x){
             int p,c;
             for(x=a[p=1],c=2;c<size&&(a[c+=(c+1<size&&a[c+1]<a[c])?1:0]<a[size]);a[p]=a[c],p=c,c<<=1);
             a[p]=a[size--];
             }
        }h;

  • 相关阅读:
    python中的编码与解码
    python中的迭代器
    python中高阶函数与装饰器(3)
    python中高阶函数与装饰器(2)
    python中高阶函数与装饰器
    python中几种常用的数据类型
    python 启航
    Python [习题] 字典排序
    SQL-TSQL
    SQL基础语句
  • 原文地址:https://www.cnblogs.com/ziyunlong/p/3096678.html
Copyright © 2011-2022 走看看