zoukankan      html  css  js  c++  java
  • Java 线程池

    系统启动一个线程的成本是比较高的,因为它涉及到与操作系统的交互,使用线程池的好处是提高性能,当系统中包含大量并发的线程时,会导致系统性能剧烈下降,甚至导致JVM崩溃,而线程池的最大线程数参数可以控制系统中并发线程数不超过次数。

    一、Executors 工厂类用来产生线程池,该工厂类包含以下几个静态工厂方法来创建对应的线程池。创建的线程池是一个ExecutorService对象,使用该对象的submit方法或者是execute方法执行相应的Runnable或者是Callable任务。线程池本身在不再需要的时候调用shutdown()方法停止线程池,调用该方法后,该线程池将不再允许任务添加进来,但是会直到已添加的所有任务执行完成后才死亡。

    1、newCachedThreadPool(),创建一个具有缓存功能的线程池,提交到该线程池的任务(Runnable或Callable对象)创建的线程,如果执行完成,会被缓存到CachedThreadPool中,供后面需要执行的任务使用。

    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    
    public class CacheThreadPool {
        static class Task implements Runnable {
            @Override
            public void run() {
                System.out.println(this + " " + Thread.currentThread().getName() + " AllStackTraces map size: "
                        + Thread.currentThread().getAllStackTraces().size());
            }
        }
    
        public static void main(String[] args) {
            ExecutorService cacheThreadPool = Executors.newCachedThreadPool();
            
            //先添加三个任务到线程池
            for(int i = 0 ; i < 3; i++) {
                cacheThreadPool.execute(new Task());
            }
            
            //等三个线程执行完成后,再次添加三个任务到线程池
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            
            for(int i = 0 ; i < 3; i++) {
                cacheThreadPool.execute(new Task());
            }
        }
    
    }

    执行结果如下:

    CacheThreadPool$Task@2d312eb9 pool-1-thread-1 AllStackTraces map size: 7
    CacheThreadPool$Task@59522b86 pool-1-thread-3 AllStackTraces map size: 7
    CacheThreadPool$Task@73dbb89f pool-1-thread-2 AllStackTraces map size: 7
    CacheThreadPool$Task@5795cedc pool-1-thread-3 AllStackTraces map size: 7
    CacheThreadPool$Task@256d5600 pool-1-thread-1 AllStackTraces map size: 7
    CacheThreadPool$Task@7d1c5894 pool-1-thread-2 AllStackTraces map size: 7

    线程池中的线程对象进行了缓存,当有新任务执行时进行了复用。但是如果有特别多的并发时,缓存线程池还是会创建很多个线程对象。

    2、newFixedThreadPool(int nThreads) 创建一个指定线程个数,线程可复用的线程池。

    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    
    public class FixedThreadPool {
        static class Task implements Runnable {
            @Override
            public void run() {
                System.out.println(this + " " + Thread.currentThread().getName() + " AllStackTraces map size: "
                        + Thread.currentThread().getAllStackTraces().size());
            }
        }
    
        public static void main(String[] args) {
            ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
    
            // 先添加三个任务到线程池
            for (int i = 0; i < 5; i++) {
                fixedThreadPool.execute(new Task());
            }
    
            // 等三个线程执行完成后,再次添加三个任务到线程池
            try {
                Thread.sleep(3);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
    
            for (int i = 0; i < 3; i++) {
                fixedThreadPool.execute(new Task());
            }
        }
    
    }

    执行结果:

    FixedThreadPool$Task@7045c12d pool-1-thread-2 AllStackTraces map size: 7
    FixedThreadPool$Task@50fa0bef pool-1-thread-2 AllStackTraces map size: 7
    FixedThreadPool$Task@ccb1870 pool-1-thread-2 AllStackTraces map size: 7
    FixedThreadPool$Task@7392b4e3 pool-1-thread-1 AllStackTraces map size: 7
    FixedThreadPool$Task@5bdeff18 pool-1-thread-2 AllStackTraces map size: 7
    FixedThreadPool$Task@7d5554e1 pool-1-thread-1 AllStackTraces map size: 7
    FixedThreadPool$Task@24468092 pool-1-thread-3 AllStackTraces map size: 7
    FixedThreadPool$Task@fa7b978 pool-1-thread-2 AllStackTraces map size: 7

    3、newSingleThreadExecutor(),创建一个只有单线程的线程池,相当于调用newFixedThreadPool(1)

    4、newSheduledThreadPool(int corePoolSize),创建指定线程数的线程池,它可以在指定延迟后执行线程。也可以以某一周期重复执行某一线程,知道调用shutdown()关闭线程池。

    示例如下:

    import java.util.concurrent.Executors;
    import java.util.concurrent.ScheduledExecutorService;
    import java.util.concurrent.TimeUnit;
    
    public class ScheduledThreadPool {
        static class Task implements Runnable {
            @Override
            public void run() {
                System.out.println("time " + System.currentTimeMillis()  + " " + Thread.currentThread().getName() + " AllStackTraces map size: "
                        + Thread.currentThread().getAllStackTraces().size());
            }
        }
    
        public static void main(String[] args) {
            ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(3);
            
            scheduledExecutorService.schedule(new Task(), 3, TimeUnit.SECONDS);
            
            scheduledExecutorService.scheduleAtFixedRate(new Task(), 3, 5, TimeUnit.SECONDS);
        
            try {
                Thread.sleep(30 * 1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            scheduledExecutorService.shutdown();
        }
    
    }

    运行结果如下:

    time 1458921795240 pool-1-thread-1 AllStackTraces map size: 6
    time 1458921795241 pool-1-thread-2 AllStackTraces map size: 6
    time 1458921800240 pool-1-thread-1 AllStackTraces map size: 7
    time 1458921805240 pool-1-thread-1 AllStackTraces map size: 7
    time 1458921810240 pool-1-thread-1 AllStackTraces map size: 7
    time 1458921815240 pool-1-thread-1 AllStackTraces map size: 7
    time 1458921820240 pool-1-thread-1 AllStackTraces map size: 7

    由运行时间可看出,任务是按照5秒的周期执行的。

    5、newSingleThreadScheduledExecutor() 创建一个只有一个线程的线程池,同调用newScheduledThreadPool(1)。

    二、ForkJoinPool和ForkJoinTask

    ForkJoinPool是ExecutorService的实现类,支持将一个任务划分为多个小任务并行计算,在把多个小任务的计算结果合并成总的计算结果。它有两个构造函数

    ForkJoinPool(int parallelism)创建一个包含parallelism个并行线程的ForkJoinPool。

    ForkJoinPool(),以Runtime.availableProcessors()方法返回值作为parallelism参数来创建ForkJoinPool。

    ForkJoinTask 代表一个可以并行,合并的任务。它是实现了Future<T>接口的抽象类,它有两个抽象子类,代表无返回值任务的RecuriveAction和有返回值的RecursiveTask。可根据具体需求继承这两个抽象类实现自己的对象,然后调用ForkJoinPool的submit 方法执行。

    RecuriveAction 示例如下,实现并行输出0-300的数字。

    import java.util.concurrent.ForkJoinPool;
    import java.util.concurrent.RecursiveAction;
    import java.util.concurrent.TimeUnit;
    
    public class ActionForkJoinTask {
        static class PrintTask extends RecursiveAction {
            private static final int THRESHOLD = 50;
            private int start;
            private int end;
    
            public PrintTask(int start, int end) {
                this.start = start;
                this.end = end;
            }
    
            @Override
            protected void compute() {
                if (end - start < THRESHOLD) {
                    for(int i = start; i < end; i++) {
                        System.out.println(Thread.currentThread().getName() + " " + i);
                    }
                } else {
                    int middle = (start + end) / 2;
                    PrintTask left = new PrintTask(start, middle);
                    PrintTask right = new PrintTask(middle, end);
                    left.fork();
                    right.fork();
                }
            }
    
        }
    
        public static void main(String[] args) {
            ForkJoinPool pool = new ForkJoinPool();
            
            pool.submit(new PrintTask(0,  300));
            try {
                pool.awaitTermination(2, TimeUnit.SECONDS);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            
            pool.shutdown();
        }
    
    }

    在拆分小任务后,调用任务的fork()方法,加入到ForkJoinPool中并行执行。

    RecursiveTask示例,实现并行计算100个整数求和。拆分为每20个数求和后获取结果,在最后合并为最后的结果。

    import java.util.Random;
    import java.util.concurrent.ExecutionException;
    import java.util.concurrent.ForkJoinPool;
    import java.util.concurrent.Future;
    import java.util.concurrent.RecursiveTask;
    
    public class TaskForkJoinTask {
        static class CalTask extends RecursiveTask<Integer> {
            private static final int THRESHOLD = 20;
    
            private int arr[];
            private int start;
            private int end;
    
            public CalTask(int[] arr, int start, int end) {
                this.arr = arr;
                this.start = start;
                this.end = end;
            }
    
            @Override
            protected Integer compute() {
                int sum = 0;
    
                if (end - start < THRESHOLD) {
                    for (int i = start; i < end; i++) {
                        sum += arr[i];
                    }
                    System.out.println(Thread.currentThread().getName() + "  sum:" + sum);
                    return sum;
                } else {
                    int middle = (start + end) / 2;
                    CalTask left = new CalTask(arr, start, middle);
                    CalTask right = new CalTask(arr, middle, end);
    
                    left.fork();
                    right.fork();
    
                    return left.join() + right.join();
                }
            }
    
        }
    
        public static void main(String[] args) {
            int arr[] = new int[100];
            Random random = new Random();
            int total = 0;
    
            for (int i = 0; i < arr.length; i++) {
                int tmp = random.nextInt(20);
                total += (arr[i] = tmp);
            }
            System.out.println("total " + total);
    
            ForkJoinPool pool = new ForkJoinPool(4);
    
            Future<Integer> future = pool.submit(new CalTask(arr, 0, arr.length));
            try {
                System.out.println("cal result: " + future.get());
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (ExecutionException e) {
                e.printStackTrace();
            }
            pool.shutdown();
        }
    
    }

    执行结果如下:

    total 912
    ForkJoinPool-1-worker-2  sum:82
    ForkJoinPool-1-worker-2  sum:123
    ForkJoinPool-1-worker-2  sum:144
    ForkJoinPool-1-worker-3  sum:119
    ForkJoinPool-1-worker-2  sum:106
    ForkJoinPool-1-worker-2  sum:128
    ForkJoinPool-1-worker-2  sum:121
    ForkJoinPool-1-worker-3  sum:89
    cal result: 912

    子任务执行完后,调用任务的join()方法获取子任务执行结果,再相加获得最后的结果。

  • 相关阅读:
    springboot配置redis缓存
    【spark】local模式运行
    mybatis从入门到精通(二) 增删查改
    学习设计模式
    学习设计模式
    mybatis从入门到精通(一) 入门
    学习NIO 之 使用方法
    学习 NIO 之 零拷贝
    Java并发
    学习设计模式
  • 原文地址:https://www.cnblogs.com/zj2012zy/p/5321697.html
Copyright © 2011-2022 走看看