题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=1797
题解:
详细的讲解去看http://hzwer.com/3217.html
首先跑一个最小割。
那么剩下的就是一个结论的事了:
对残余网络跑一个Tarjan缩点,
1).对于一条满载边u->v,u->v能够出现在某个最小割集中,当且仅当u,v不属于同一个SCC;
2).对于一条满载边u->v,u->v必定出现在最小割集中,当且仅当u,v分别在S,T的SCC中。(u,v必然不在一个SCC中)
代码:
#include<queue> #include<cstdio> #include<cstring> #include<iostream> #define MAXN 4500 #define MAXM 125000 #define INF 0x3f3f3f3f using namespace std; struct Edge{ int from[MAXM],to[MAXM],cap[MAXM],nxt[MAXM],head[MAXN],ent; void Init(){ ent=2; memset(head,0,sizeof(head)); } void Adde(int u,int v,int w){ from[ent]=u; to[ent]=v; cap[ent]=w; nxt[ent]=head[u]; head[u]=ent++; from[ent]=v; to[ent]=u; cap[ent]=0; nxt[ent]=head[v]; head[v]=ent++; } int Next(int i,bool type){ return type?head[i]:nxt[i]; } }E; int dfn[MAXN],low[MAXN],bel[MAXN],sta[MAXN],tim,top,cnt; int cur[MAXN],d[MAXN]; bool ins[MAXN]; int N,M,S,T; bool bfs(){ queue<int> q; memset(d,0,sizeof(d)); d[S]=1; q.push(S); int u,v; while(!q.empty()){ u=q.front(); q.pop(); for(int i=E.Next(u,1);i;i=E.Next(i,0)){ v=E.to[i]; if(d[v]||!E.cap[i]) continue; d[v]=d[u]+1; q.push(v); } } return d[T]; } int dfs(int u,int reflow){ if(u==T||!reflow) return reflow; int flowout=0,f,v; for(int &i=cur[u];i;i=E.Next(i,0)){ v=E.to[i]; if(d[v]!=d[u]+1) continue; f=dfs(v,min(reflow,E.cap[i])); flowout+=f; E.cap[i^1]+=f; reflow-=f; E.cap[i]-=f; if(!reflow) break; } if(!flowout) d[u]=0; return flowout; } int Dinic(){ int flow=0; while(bfs()){ memcpy(cur,E.head,sizeof(E.head)); flow+=dfs(S,INF); } return flow; } void Tarjan(int u){ dfn[u]=low[u]=++tim; sta[++top]=u; ins[u]=1; for(int i=E.Next(u,1);i;i=E.Next(i,0)) if(E.cap[i]){ int v=E.to[i]; if(!dfn[v]) Tarjan(v),low[u]=min(low[u],low[v]); else if(ins[v]) low[u]=min(low[u],dfn[v]); } if(dfn[u]!=low[u]) return; cnt++; int v; do{ v=sta[top--]; bel[v]=cnt; ins[v]=0; }while(v!=u); } int main() { E.Init(); scanf("%d%d%d%d",&N,&M,&S,&T); for(int a,b,c,i=1;i<=M;i++) scanf("%d%d%d",&a,&b,&c),E.Adde(a,b,c); int ans=Dinic(); for(int i=1;i<=N;i++) if(!dfn[i]) Tarjan(i); for(int i=2,u,v;i<2*M+2;i+=2){ u=E.from[i]; v=E.to[i]; if(E.cap[i]||bel[u]==bel[v]) printf("0 0 ");//important else{ printf("1 "); if((bel[u]==bel[S]&&bel[v]==bel[T])||(bel[u]==bel[T]&&bel[v]==bel[S])) printf("1 "); else printf("0 "); } } return 0; }