zoukankan      html  css  js  c++  java
  • ●BZOJ 1185 [HNOI2007]最小矩形覆盖

    题链:

    http://www.lydsy.com/JudgeOnline/problem.php?id=1185

    题解:

    计算几何,凸包,旋转卡壳

    结论:矩形的某一条边在凸包的一条边所在的直线上。

    (证不来,网上好像也没看到证明。。。诶。。。)

    通过结论,问题转化为枚举凸包每条边,然后求出当矩形的一条边在该边所在的直线上时的最小矩形

    即我们需要求出在凸包上,相对与这条边的最右边,最上面和最左边的点,

    而最上面的点可以通过叉积得到最优位置,

    最左和最右就可以通过点积的到最优位置,(一个点积最大,一个点积最小)。

    同时由于随着边的顺时针枚举,这三个东西都具有单调性,所以用旋转卡壳。

    代码:

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define MAXN 50050
    using namespace std;
    const double eps=1e-10;
    int sign(double x){
    	if(fabs(x)<=eps) return 0;
    	return x<0?-1:1;
    }
    struct Point{
    	double x,y;
    	Point(double _x=0,double _y=0):x(_x),y(_y){}
    	void Read(){scanf("%lf%lf",&x,&y);}
    };
    typedef Point Vector;
    bool operator < (Point A,Point B){return sign(A.x-B.x)<0||(sign(A.x-B.x)==0&&sign(A.y-B.y)<0);}
    Vector operator + (Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
    Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);}
    Vector operator * (Vector A,double k){return Vector(A.x*k,A.y*k);}
    double operator ^ (Vector A,Vector B){return A.x*B.y-A.y*B.x;}
    double operator * (Vector A,Vector B){return A.x*B.x+A.y*B.y;}
    Point D[MAXN],C[MAXN],ANS[6],tmp[6];
    int Andrew(int dnt){
    	int cnt=0,k;
    	sort(D+1,D+dnt+1);
    	for(int i=1;i<=dnt;i++){
    		while(cnt>1&&sign((C[cnt]-C[cnt-1])^(D[i]-C[cnt-1]))<=0) cnt--;
    		C[++cnt]=D[i];
    	} k=cnt;
    	for(int i=dnt-1;i>=1;i--){
    		while(cnt>k&&sign((C[cnt]-C[cnt-1])^(D[i]-C[cnt-1]))<=0) cnt--;
    		C[++cnt]=D[i];
    	}
    	return cnt-(dnt>1);
    }
    double TA(Point P1,Point P2,Point P){//Triangle_Area
    	return fabs((P-P1)^(P-P2))/2;
    }
    double PP(Point P1,Point P2,Point P){//Projection_Product
    	return (P-P1)*(P2-P1);
    }
    double GL(Vector A){//Get_Length
    	return sqrt(A*A);
    }
    Vector UV(Vector A){//Unit_Vector
    	double len=GL(A);
    	return Vector(A.x*(1/len),A.y*(1/len));
    }
    double DTL(Point P,Point P1,Point P2){//Distant_to_Line
    	return fabs(((P-P1)^(P-P2))/GL(P2-P1));
    }
    double rectangle(Vector v,Point d,Point r,Point u,Point l){
    	static Vector _v,w; static double t,h;
    	_v=Vector(-v.y,v.x); 
    	v=UV(v); _v=UV(_v); w=l-d;
    	t=(w^_v)/(v^_v); 
    	tmp[1]=d+(v*t);
    	h=DTL(r,tmp[1],tmp[1]+_v);
    	tmp[2]=tmp[1]+v*h;
    	h=DTL(u,tmp[1],tmp[1]+v);
    	tmp[4]=tmp[1]+_v*h;
    	tmp[3]=tmp[1]+((tmp[2]-tmp[1])+(tmp[4]-tmp[1]));
    	return TA(tmp[1],tmp[3],tmp[4])+TA(tmp[1],tmp[3],tmp[2]);
    }
    double RC(int cnt){//Rotating_Calipers
    	double S=1e300,_S; C[cnt+1]=C[1];
    	int l,r=1,u=1;
    	for(int i=1;i<=cnt;i++){
    		while(sign(PP(C[i],C[i+1],C[r])-PP(C[i],C[i+1],C[r+1]))<=0) r=r%cnt+1;
    		while(sign(TA(C[i],C[i+1],C[u])-TA(C[i],C[i+1],C[u+1]))<=0) u=u%cnt+1;
    		if(i==1) l=r;
    		while(sign(PP(C[i],C[i+1],C[l])-PP(C[i],C[i+1],C[l+1]))>0) l=l%cnt+1;
    		_S=rectangle(C[i+1]-C[i],C[i],C[r],C[u],C[l]);
    		if(sign(S-_S)>0){
    			S=_S;for(int k=1;k<=4;k++) ANS[k]=tmp[k];
    		}
    	}
    	return S;
    }
    void printPoint(){
    	int p=1; for(int i=2;i<=4;i++) 
    		if(sign(ANS[i].y-ANS[p].y)<0||(sign(ANS[i].y-ANS[p].y==0)&&sign(ANS[i].x-ANS[p].x)<0)) p=i;
    	for(int i=1;i<=4;i++,p=p%4+1) printf("%lf %lf
    ",ANS[p].x,ANS[p].y);
    }
    int main(){
    	int n; scanf("%d",&n);
    	for(int i=1;i<=n;i++) D[i].Read();
    	printf("%.5lf
    ",RC(Andrew(n)));	
    	printPoint();
    	return 0;
    }
    

      

  • 相关阅读:
    设计模式(二十)---迭代器模式
    设计模式(十九)---观察者模式
    设计模式(十八)---模板方法模式
    设计模式(十七)---策略模式
    ElasticSearch 安装
    MongoDB进击 Linux单机安装
    List集合去除重复对象。。。记录一下
    Springboot整合mybatisPlus实现分页
    git记录
    Springboot异常处理errorController
  • 原文地址:https://www.cnblogs.com/zj75211/p/8227674.html
Copyright © 2011-2022 走看看