题链:
http://poj.org/problem?id=3608
题解:
计算几何,求两个凸包间的最小距离,旋转卡壳
两个凸包间的距离,无非下面三种情况:
所以可以基于旋转卡壳的思想,去求最小距离。
(分别用i,j表示A,B凸包上枚举到的点,i的初始位置为A上y最小的顶点,j的初始位置为B上y最大的顶点。)
逆时针枚举凸包A的每一条边$vec{A_iA_{i+1}}$,然后对另一个凸包B逆时针旋转卡壳,找到第一个$vec{B_{j+1}B_j} imesvec{A_iA_{i+1}}geq0$
然后把$B_j与vec{A_iA_{i+1}}$贡献答案,如果$vec{B_{j+1}B_j}平行vec{A_iA_{i+1}}$,则$B_j和B_{j+1}$都需要贡献答案。
代码:
#include<cmath> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define MAXN 10050 using namespace std; const double eps=1e-8; int sign(double x){ if(fabs(x)<=eps) return 0; return x<0?-1:1; } struct Point{ double x,y; Point(double _x=0,double _y=0):x(_x),y(_y){} void Read(){scanf("%lf%lf",&x,&y);} }; typedef Point Vector; bool operator < (Point A,Point B){return sign(A.x-B.x)<0||(sign(A.x-B.x)==0&&sign(A.y-B.y)<0);} Vector operator - (Point A,Point B){return Vector(A.x-B.x,A.y-B.y);} double operator ^ (Vector A,Vector B){return A.x*B.y-A.y*B.x;} double operator * (Vector A,Vector B){return A.x*B.x+A.y*B.y;} Point D[MAXN],C1[MAXN],C2[MAXN]; int Andrew(int dnt,Point *C){ int cnt=0,k; sort(D+1,D+dnt+1); for(int i=1;i<=dnt;i++){ while(cnt>1&&sign((C[cnt]-C[cnt-1])^(D[i]-C[cnt-1]))<=0) cnt--; C[++cnt]=D[i]; } k=cnt; for(int i=dnt-1;i>=1;i--){ while(cnt>k&&sign((C[cnt]-C[cnt-1])^(D[i]-C[cnt-1]))<=0) cnt--; C[++cnt]=D[i]; } return cnt-(dnt>1); } double GL(Vector A){//Get_Length return sqrt(A*A); } double TA(Point P,Point A,Point B){//Triangle_Area return fabs((P-A)^(P-B)); } double DPS(Point P,Point A,Point B){//the_Distance_of_Point_to_Segment if(sign(GL(B-A))==0) return GL(P-A); if(sign((P-A)*(B-A))<0) return GL(P-A); if(sign((P-B)*(A-B))<0) return GL(P-B); return TA(P,A,B)/GL(B-A); } double RC(int ant,Point *A,int bnt,Point *B){//Rotating_Calipers A[ant+1]=A[1]; B[bnt+1]=B[1]; int i=1,j=1,tmp; double d=1e300; for(int k=2;k<=ant;k++) if(sign(A[k].y-A[i].y)<0||(sign(A[k].y-A[i].y)==0&&sign(A[k].x-A[i].x)<0)) i=k; for(int k=2;k<=bnt;k++) if(sign(B[k].y-B[j].y)>0||(sign(B[k].y-B[j].y)==0&&sign(B[k].x-B[j].x)>0)) j=k; for(int ci=1;ci<=ant;ci++,i=i%ant+1){ while((tmp=sign((A[i+1]-A[i])^(B[j]-B[j+1])))<0) j=j%bnt+1; d=min(d,DPS(B[j],A[i+1],A[i])); if(tmp==0) d=min(d,DPS(B[j+1],A[i+1],A[i])); } return d; } int main(){ int n,m; while(~scanf("%d%d",&n,&m)&&(n||m)){ for(int i=1;i<=n;i++) D[i].Read(); n=Andrew(n,C1); for(int i=1;i<=m;i++) D[i].Read(); m=Andrew(m,C2); printf("%.5lf ",min(RC(n,C1,m,C2),RC(m,C2,n,C1))); } return 0; }