Musical Theme
Time Limit: 1000MS | Memory Limit: 30000K | |
Description
A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the range 1..88, each representing a key on the piano. It is unfortunate but true that this representation of melodies ignores the notion of musical timing; but, this programming task is about notes and not timings.
Many composers structure their music around a repeating &qout;theme&qout;, which, being a subsequence of an entire melody, is a sequence of integers in our representation. A subsequence of a melody is a theme if it:
Transposed means that a constant positive or negative value is added to every note value in the theme subsequence.
Given a melody, compute the length (number of notes) of the longest theme.
One second time limit for this problem's solutions!
Many composers structure their music around a repeating &qout;theme&qout;, which, being a subsequence of an entire melody, is a sequence of integers in our representation. A subsequence of a melody is a theme if it:
- is at least five notes long
- appears (potentially transposed -- see below) again somewhere else in the piece of music
- is disjoint from (i.e., non-overlapping with) at least one of its other appearance(s)
Transposed means that a constant positive or negative value is added to every note value in the theme subsequence.
Given a melody, compute the length (number of notes) of the longest theme.
One second time limit for this problem's solutions!
Input
The
input contains several test cases. The first line of each test case
contains the integer N. The following n integers represent the sequence
of notes.
The last test case is followed by one zero.
The last test case is followed by one zero.
Output
For
each test case, the output file should contain a single line with a
single integer that represents the length of the longest theme. If there
are no themes, output 0.
Sample Input
30 25 27 30 34 39 45 52 60 69 79 69 60 52 45 39 34 30 26 22 18 82 78 74 70 66 67 64 60 65 80 0
Sample Output
5
Hint
Use scanf instead of cin to reduce the read time.
Source
后缀数组裸题。。楼教主男人八题之一.. = =
二分长度。。检测的时候按照height分组。。
1 #include<set> 2 #include<map> 3 #include<cmath> 4 #include<ctime> 5 #include<queue> 6 #include<vector> 7 #include<cstdio> 8 #include<cstring> 9 #include<cstdlib> 10 #include<iostream> 11 #include<algorithm> 12 using namespace std; 13 const int N = 20010; 14 #define rep(i,n) for(int i=0;i<n;i++) 15 #define Rep(i,n) for(int i=1;i<=n;i++) 16 #define For(i,l,r) for(int i=l;i<=r;i++) 17 #define down(i,n) for(int i=n-1;i>=0;i--) 18 19 int rank[N],height[N],UN,st[N],wa[N],wb[N],cnt[N],tx[N],sa[N]; 20 21 bool cmp(int *r,int a,int b,int l){ 22 return (r[a]==r[b])&&(r[a+l]==r[b+l]); 23 } 24 25 void BuildSA(int *r,int *sa,int n,int m){ 26 int i,p,d,*x=wa,*id=wb,*t; 27 rep(i,m) cnt[i]=0; 28 rep(i,n) cnt[x[i]=r[i]]++; 29 rep(i,m) cnt[i+1]+=cnt[i]; 30 down(i,n) sa[--cnt[x[i]]]=i; 31 for(p=1,d=1;p<n;d*=2,m=p){ 32 for(p=0,i=n-d;i<n;i++) id[p++]=i; 33 rep(i,n) if(sa[i]>=d) id[p++]=sa[i]-d; 34 rep(i,n) tx[i]=x[id[i]]; 35 rep(i,m) cnt[i]=0; 36 rep(i,n) cnt[tx[i]]++; 37 rep(i,m) cnt[i+1]+=cnt[i]; 38 down(i,n) sa[--cnt[tx[i]]]=id[i]; 39 swap(x,id);p=1;x[sa[0]]=0; 40 Rep(i,n-1) 41 x[sa[i]]=cmp(id,sa[i-1],sa[i],d)?(p-1):(p++); 42 } 43 } 44 45 bool Check(int Lim){ 46 int Max=sa[1],Min=sa[1]; 47 For(i,2,UN) 48 if(height[i]<Lim) Min=Max=sa[i]; 49 else{ 50 Max=max(Max,sa[i]);Min=min(Min,sa[i]); 51 if(Max-Min>Lim) return true; 52 } 53 return false; 54 } 55 56 void Binary(int Left,int Right){ 57 while(Right-Left>1){ 58 int Mid=(Left+Right)>>1; 59 if(Check(Mid)) Left=Mid; 60 else Right=Mid; 61 } 62 if(Check(Right)) Left=Right; 63 if(Left>=4) Left++; 64 else Left=0; 65 printf("%d ",Left); 66 } 67 68 void CalHeight(int *st,int *sa,int n){ 69 int i,j,k=0; 70 Rep(i,n) rank[sa[i]]=i; 71 for(i=0;i<n;height[rank[i++]]=k) 72 for(k?(k--):(0),j=sa[rank[i]-1];st[i+k]==st[j+k];k++); 73 } 74 75 int main(){ 76 int n,Last=0,Temp; 77 while(scanf("%d",&n),n){ 78 rep(i,n){ 79 scanf("%d",&Temp); 80 st[i]=Temp-Last+90; 81 Last=Temp; 82 } 83 st[n]=0; 84 BuildSA(st,sa,n+1,200); 85 UN=n+1; 86 CalHeight(st,sa,n); 87 Binary(1,n); 88 } 89 return 0; 90 }