zoukankan      html  css  js  c++  java
  • POJ2689 HDU2824 筛法、欧拉函数

    传送门什么的@百度。。

                                      Prime Distance
    Time Limit: 1000MS        Memory Limit: 65536K
    
    Description
    The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.
    Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).
    
    Input
    Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.
    
    Output
    For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.
    
    Sample Input
    
    2 17
    14 17
    
    Sample Output
    
    2,3 are closest, 7,11 are most distant.
    There are no adjacent primes.
    
    Source
    Waterloo local 1998.10.17
    The Euler function
    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    
    
    Problem Description
    The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
     
    
    Input
    There are several test cases. Each line has two integers a, b (2<a<b<3000000).
     
    
    Output
    Output the result of (a)+ (a+1)+....+ (b)
     
    
    Sample Input
    
    3 100
    
     
    
    Sample Output
    
    3042
    
     
    
    Source
    2009 Multi-University Training Contest 1 - Host by TJU
     
    HDU2824题目

    后缀数组暂时放了。。因为感觉复赛回来之后代码也就忘差不多了。。?

    写的都是O(n)的筛法。。欧拉函数的写法是贾教的。。

    codes:

     1 #include<set>
     2 #include<map>
     3 #include<cmath>
     4 #include<queue>
     5 #include<cstdio>
     6 #include<cstdlib>
     7 #include<cstring>
     8 #include<iostream>
     9 #include<algorithm>
    10 using namespace std;
    11 const int N = 500000*2;
    12 #define rep(i,n) for(int i=0;i<n;i++)
    13 #define Rep(i,n) for(int i=1;i<=n;i++)
    14 #define For(i,l,r) for(int i=l;i<=r;i++)
    15 int prime[N+10],l,r,primes[N+10],last,now,ansmin,ansmax;
    16 int ans1,ans2,ans3,ans4;
    17 bool check[N+10],checks[N+10];
    18 
    19 void PRIME(int n){
    20     For(i,2,n){
    21         if(!check[i]) prime[++prime[0]]=i;
    22         Rep(j,prime[0]){
    23             if(prime[j]*i>n) break;
    24             check[prime[j]*i]=true;
    25             if(!(i%prime[j])) break; 
    26         }
    27     }
    28 }
    29 
    30 void query(int l,int r){
    31     memset(checks,false,sizeof(checks));
    32     primes[0]=0;ansmin=1e9;ansmax=0;
    33     ans1=ans2=ans3=ans4=last=now=0;
    34     Rep(i,prime[0]){
    35         For(j,l/prime[i],r/prime[i]){
    36             if(prime[i]*j<l||j==1) continue;
    37             checks[prime[i]*j-l]=true;
    38         }
    39     }
    40     if(l==1) checks[0]=true;
    41     rep(i,r-l+1)
    42         if(!checks[i]) { 
    43             primes[++primes[0]]=i+l;
    44             now=i+l;
    45             if(now-last>ansmax && last){
    46                 ansmax=now-last;
    47                 ans1=last;ans2=now;
    48             }
    49             if(now-last<ansmin){
    50                 ansmin=now-last;
    51                 ans3=last;ans4=now;
    52             }
    53             last=now;
    54         }
    55     if(primes[0]>1) printf("%d,%d are closest, %d,%d are most distant.
    ",ans3,ans4,ans1,ans2);
    56     else            puts("There are no adjacent primes.");
    57 }
    58 
    59 int main(){
    60     PRIME(N);
    61     while(scanf("%d%d",&l,&r)!=EOF) query(l,r);
    62     return 0;
    63 }
     1 #include<set>
     2 #include<map>
     3 #include<queue>
     4 #include<cstdio>
     5 #include<cstdlib>
     6 #include<cstring>
     7 #include<iostream>
     8 #include<algorithm>
     9 using namespace std;
    10 const int N = 3000000;
    11 #define rep(i,n) for(int i=0;i<n;i++)
    12 #define Rep(i,n) for(int i=1;i<=n;i++)
    13 #define For(i,l,r) for(int i=l;i<=r;i++)
    14 
    15 int a,b;
    16 int phi[N+3],prime[1000000];
    17 bool check[N+3];
    18 
    19 void PHI(int n){
    20     phi[1]=1;
    21     For(i,2,n){
    22         if(!check[i]){
    23             prime[++prime[0]]=i;
    24             phi[i]=i-1;
    25         }
    26         Rep(j,prime[0]){
    27             if(prime[j]*i>n) break;
    28             check[prime[j]*i]=true;
    29             if(i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-1);
    30             else {
    31                 phi[i*prime[j]]=phi[i]*prime[j];
    32                 break;
    33             }
    34         }
    35     } 
    36 }
    37 
    38 int main(){
    39     PHI(N);
    40     while(scanf("%d%d",&a,&b)!=EOF) {
    41         long long sum=0;
    42         For(i,a,b) sum+=phi[i];
    43         printf("%I64d
    ",sum);
    44     }
    45     return 0;
    46 }
  • 相关阅读:
    “Computer Management Snapin Launcher已停止工作”的解决方案
    IFrame与window对象(contentWindow)
    使用Emeditor转换编码(ShiftJS 到 UTF8)
    从注册表中删除程序,不要忘记这两个地方
    Visual Studio fatal error C1902: 程序数据库管理器不匹配;请检查安装
    一些TC内置的环境环境变量(注意字母必须大写,且只能在TC内用)
    使用WIN32 API CreateProcess()以无窗口方式创建DOS程序
    VC中DDX/DDV自定义
    javascript 一条语句实现随机数语句
    Emeditor
  • 原文地址:https://www.cnblogs.com/zjdx1998/p/3999425.html
Copyright © 2011-2022 走看看