zoukankan      html  css  js  c++  java
  • 【读书报告--03】神经网络基础学习

    1.神经元

    神经元和感知器本质上是一样的,只不过我们说感知器的时候,它的激活函数是阶跃函数;而当我们说神经元时,激活函数往往选择为sigmoid函数或tanh函数

    2.神经网络的训练

    现在,我们需要知道一个神经网络的每个连接上的权值是如何得到的。我们可以说神经网络是一个模型,那么这些权值就是模型的参数,也就是模型要学习的东西。然而,一个神经网络的连接方式、网络的层数、每层的节点数这些参数,则不是学习出来的,而是人为事先设置的。对于这些人为设置的参数,我们称之为超参数(Hyper-Parameters)。

    3.反向传播算法(Back Propagation)

    其中是误差项,ai是每个节点的输出

    个人理解:在全连接神经网络中,加入误差项,误差项来源于每个节点的输出,通过误差项影响权值w的更新,此为反向传播算法

    具体的反向传播算法的推导在此不作详解。 

  • 相关阅读:
    【iOS】找工作的面试题集锦
    APP项目优化--启动速度优化篇
    【Swift】Timer定时器到底准不准确?
    leetcode刷题 495~
    leetcode刷题 464~
    leetcode刷题 441~
    leetcode刷题 420~
    leetcode刷题 396~
    leetcode刷题 373~
    leetcode刷题 307~
  • 原文地址:https://www.cnblogs.com/zjinwei/p/10131955.html
Copyright © 2011-2022 走看看