zoukankan      html  css  js  c++  java
  • 第十四周周总结

    2020.05.23

    车牌模板匹配

    将之前切割的车牌字符图篇一张一张的与已知数据集进行对比,获取相似度,取相似度最高的图篇标签为该车牌字符

    # 导入所需模块
    import cv2
    from matplotlib import pyplot as plt
    import os
    
    def chepai_shibie():
        template = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
                    'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
                    'X', 'Y', 'Z',
                    '藏', '川', '鄂', '甘', '赣', '贵', '桂', '黑', '沪', '吉', '冀', '津', '晋', '京', '辽', '鲁', '蒙', '闽', '宁',
                    '青', '琼', '陕', '苏', '皖', '湘', '新', '渝', '豫', '粤', '云', '浙']
        resultChepai = ''
    
        # 读取一个文件夹下的所有图片,输入参数是文件名
        def read_directory(directory_name):
            referImg_list = []
            for filename in os.listdir(directory_name):
                # print(filename)  # 仅仅是为了测试
                # img = cv2.imread(directory_name + "/" + filename)
                referImg_list.append(directory_name + "/" + filename)
    
            return referImg_list
    
        # 匹配中文
        c_words = []
        for i in range(34, 64):
            c_word = read_directory('refer1/' + template[i])
            c_words.append(c_word)
    
        # 读取一个车牌字符
        img = cv2.imread('chepai/test2_1.jpg')
        # plt_show0(img)
    
        # 灰度处理,二值化
        # 高斯去噪
        image = cv2.GaussianBlur(img, (1, 1), 0)
        # plt_show(image)
        # 灰度处理
        gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
        # plt_show(gray_image)
    
        # 自适应阈值处理
        ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
        # plt_show(image_)
    
        import numpy as np
    
        best_score = []
        for c_word in c_words:
            # print('c_word:',c_word)
            score = []
            for word in c_word:
                # print('word:', word)
                #         print(word)
                # fromfile()函数读回数据时需要用户指定元素类型,并对数组的形状进行适当的修改
                template_img = cv2.imdecode(np.fromfile(word, dtype=np.uint8), 1)
                #         template_img = cv2.imread(word)
                #         print(template_img)
                #         cv_show('template_img',template_img)
                #         template_img = np.float32(template_img)
                #         plt_show0(template_img)
                #         print(word)
                template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
                ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
                height, width = template_img.shape
                image = image_.copy()
                image = cv2.resize(image, (width, height))
                result = cv2.matchTemplate(image, template_img, cv2.TM_CCOEFF)  # matchTemplate可更改参数 ↓↓↓  匹配方法
                score.append(result[0][0])
            best_score.append(max(score))
    
        print(best_score)
        print(max(best_score))
        print(best_score.index(max(best_score)))
        flag1 = 34 + best_score.index(max(best_score))
        # print(template[34])
        print(template[int(flag1)])  # 车牌第一次汉字
        resultChepai += template[int(flag1)]
        '''
        score = []
        best_template = None
        best_refer = None
        for refer in referImg_list:
            #     refer = refer[0]
            #     print(refer)
            template = cv2.imread(refer)
    
            template = cv2.GaussianBlur(template, (3, 3), 0)
            # 灰度处理
            template = cv2.cvtColor(template, cv2.COLOR_RGB2GRAY)
            # 自适应阈值处理
            ret, template = cv2.threshold(template, 0, 255, cv2.THRESH_OTSU)
    
            height, width = template.shape
            image = image_.copy()
            image = cv2.resize(image, (width, height))  # 和模板一致
            #     plt_show(image)
            # TM_SQDIFF TM_CCOEFF
            # TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
            # TM_CCORR:计算相关性,计算出来的值越大,越相关
            # TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
            # TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
            # TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
            # TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
            result = cv2.matchTemplate(image, template, cv2.TM_CCOEFF)
            #     print(score)
            if score != [] and result[0][0] > max(score):
                best_template = None
                best_refer = None
                best_template = template
                best_refer = refer
            score.append(result[0][0])
    
        print(score)
        plt_show(best_template)
        print(max(score))
        print(best_refer)
        '''
        # 读取一个车牌字符
        img = cv2.imread('chepai/test2_2.jpg')
        # plt_show0(img)
        # 灰度处理,二值化
        # 高斯去噪
        image = cv2.GaussianBlur(img, (3, 3), 0)
        # 灰度处理
        gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
        # plt_show(gray_image)
        # 自适应阈值处理
        ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
        # plt_show(image_)
        # 字母模板列表
        # 匹配中文
        c_words = []
        for i in range(10, 34):
            c_word = read_directory('./refer1/' + template[i])
            c_words.append(c_word)
    
        import numpy as np
    
        best_score = []
        for c_word in c_words:
            score = []
            for word in c_word:
                # fromfile()函数读回数据时需要用户指定元素类型,并对数组的形状进行适当的修改
                template_img = cv2.imdecode(np.fromfile(word, dtype=np.uint8), 1)
                template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
                ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
                height, width = template_img.shape
                image = image_.copy()
                image = cv2.resize(image, (width, height))
                result = cv2.matchTemplate(image, template_img, cv2.TM_CCOEFF)
                score.append(result[0][0])
            best_score.append(max(score))
    
        print(best_score)
        print(max(best_score))
        print(best_score.index(max(best_score)))
    
        flag2 = 10 + int(best_score.index(max(best_score)))
        print(template[int(flag2)])
        resultChepai += template[int(flag2)]
    
        chepais = ['test2_3', 'test2_4', 'test2_5', 'test2_6', 'test2_7']
        for chepai in chepais:
            # 读取一个车牌字符
            img = cv2.imread('chepai/' + chepai + '.jpg')
            # plt_show0(img)
            # 灰度处理,二值化
            # 高斯去噪
            image = cv2.GaussianBlur(img, (3, 3), 0)
            # 灰度处理
            gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
            # plt_show(gray_image)
            # 自适应阈值处理
            ret, image_ = cv2.threshold(gray_image, 0, 255, cv2.THRESH_OTSU)
            # plt_show(image_)
            # 字母数字模板列表
            c_words = []
            for i in range(0, 34):
                c_word = read_directory('refer1/' + template[i])
                c_words.append(c_word)
            import numpy as np
    
            best_score = []
            for c_word in c_words:
                score = []
                for word in c_word:
                    # fromfile()函数读回数据时需要用户指定元素类型,并对数组的形状进行适当的修改
                    template_img = cv2.imdecode(np.fromfile(word, dtype=np.uint8), 1)
                    template_img = cv2.cvtColor(template_img, cv2.COLOR_RGB2GRAY)
                    ret, template_img = cv2.threshold(template_img, 0, 255, cv2.THRESH_OTSU)
                    height, width = template_img.shape
                    image = image_.copy()
                    image = cv2.resize(image, (width, height))
                    result = cv2.matchTemplate(image, template_img, cv2.TM_CCOEFF)
                    score.append(result[0][0])
                best_score.append(max(score))
    
            print(best_score)
            print(max(best_score))
            flag3 = 0 + best_score.index(max(best_score))
            print(template[int(flag3)])
            resultChepai += template[int(flag3)]
    
        print('车牌识别结果为:', resultChepai
    

      

  • 相关阅读:
    BZOJ 1854 [Scoi2010]游戏
    【模板】二分图匹配-匈牙利算法
    BZOJ 1432 [ZJOI2009]Function
    BZOJ 1192 [HNOI2006]鬼谷子的钱袋
    BZOJ 1088 [SCOI2005]扫雷Mine
    BZOJ 1047 [HAOI2007]理想的正方形
    BZOJ 1034 [ZJOI2008]泡泡堂BNB
    BZOJ 1022 [SHOI2008]小约翰的游戏John
    LOJ 6278 数列分块入门2
    【BZOJ 1003】[ZJOI2006]物流运输(Dijkstra+DP)
  • 原文地址:https://www.cnblogs.com/zjl-0217/p/12978358.html
Copyright © 2011-2022 走看看