2020.05.09
视频定位追踪,用的是opencv自带的tracker进行手动选择定位追踪,代码参考连接:https://blog.csdn.net/shujian_tianya/article/details/84558033
但其存在很大的问题,当一个对象在较长一段时间内越过障碍物,或者它们移动太快以至于跟踪算法无法跟上时,可能会失去对该对象的跟踪。
其只实现了手动选择跟踪,下一步需完成自动选择跟踪,并且能够抓拍图像图片信息,并保存图片。
python实现代码:
import cv2 import sys # 获得opencv的版本 (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.') if __name__ == '__main__': # 建立跟踪器,选择跟踪器的类型 tracker_types = ['BOOSTING', 'MIL', 'KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', 'MOSSE', 'CSRT'] tracker_type = tracker_types[2] print(int(minor_ver)) if int(minor_ver) < 2: tracker = cv2.Tracker_create(tracker_type) else: if tracker_type == 'BOOSTING': tracker = cv2.TrackerBoosting_create() if tracker_type == 'MIL': tracker = cv2.TrackerMIL_create() if tracker_type == 'KCF': tracker = cv2.TrackerKCF_create() if tracker_type == 'TLD': tracker = cv2.TrackerTLD_create() if tracker_type == 'MEDIANFLOW': tracker = cv2.TrackerMedianFlow_create() if tracker_type == 'GOTURN': tracker = cv2.TrackerGOTURN_create() if tracker_type == 'MOSSE': tracker = cv2.TrackerMOSSE_create() if tracker_type == "CSRT": tracker = cv2.TrackerCSRT_create() # 读取视频 video = cv2.VideoCapture("viedo-03.avi") # 打开错误时退出 if not video.isOpened(): print("Could not open video") sys.exit() # 读取视频的第一帧 ok, frame = video.read() if not ok: print('Cannot read video file') sys.exit() # 定义初始边界框 bbox = (287, 23, 86, 320) # Uncomment the line below to select a different bounding box # 选择不同的边界框 bbox = cv2.selectROI(frame, False) # Initialize tracker with first frame and bounding box # 使用视频的第一帧和边界框初始化跟踪器 ok = tracker.init(frame, bbox) while True: # Read a new frame ok, frame = video.read() if not ok: break # Start timer 记录开始时间 timer = cv2.getTickCount() # Update tracker 更新检测器 ok, bbox = tracker.update(frame) # Calculate Frames per second (FPS) 计算FPS fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer); # Draw bounding box 绘制边界框 if ok: # Tracking success 跟踪成功 p1 = (int(bbox[0]), int(bbox[1])) p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])) cv2.rectangle(frame, p1, p2, (255, 0, 0), 2, 1) print('p1:',p1,'---p2:',p2) cv2.putText(frame, tracker_type + " Tracker", p1, cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2); # Display FPS on frame 显示FPS cv2.putText(frame, "FPS : " + str(int(fps)), p1, cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2); # Display result 显示跟踪结果 else: # 跟踪失败 # Tracking failure cv2.putText(frame, "Tracking failure detected", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2) # Display tracker type on frame # 显示跟踪器的类别 cv2.imshow("Tracking", frame) # Exit if ESC pressed 按取消键退出 k = cv2.waitKey(1) if k == 27: break # esc pressed