zoukankan      html  css  js  c++  java
  • 第十二周周总结

    2020.05.09

    视频定位追踪,用的是opencv自带的tracker进行手动选择定位追踪,代码参考连接:https://blog.csdn.net/shujian_tianya/article/details/84558033

    但其存在很大的问题,当一个对象在较长一段时间内越过障碍物,或者它们移动太快以至于跟踪算法无法跟上时,可能会失去对该对象的跟踪。

    其只实现了手动选择跟踪,下一步需完成自动选择跟踪,并且能够抓拍图像图片信息,并保存图片。

    python实现代码:

    import cv2
    import sys
    # 获得opencv的版本
    (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
    
    if __name__ == '__main__':
        # 建立跟踪器,选择跟踪器的类型
        tracker_types = ['BOOSTING', 'MIL', 'KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', 'MOSSE', 'CSRT']
        tracker_type = tracker_types[2]
    
        print(int(minor_ver))
        if int(minor_ver) < 2:
            tracker = cv2.Tracker_create(tracker_type)
        else:
            if tracker_type == 'BOOSTING':
                tracker = cv2.TrackerBoosting_create()
            if tracker_type == 'MIL':
                tracker = cv2.TrackerMIL_create()
            if tracker_type == 'KCF':
                tracker = cv2.TrackerKCF_create()
            if tracker_type == 'TLD':
                tracker = cv2.TrackerTLD_create()
            if tracker_type == 'MEDIANFLOW':
                tracker = cv2.TrackerMedianFlow_create()
            if tracker_type == 'GOTURN':
                tracker = cv2.TrackerGOTURN_create()
            if tracker_type == 'MOSSE':
                tracker = cv2.TrackerMOSSE_create()
            if tracker_type == "CSRT":
                tracker = cv2.TrackerCSRT_create()
        # 读取视频
        video = cv2.VideoCapture("viedo-03.avi")
        # 打开错误时退出
        if not video.isOpened():
            print("Could not open video")
            sys.exit()
        # 读取视频的第一帧
        ok, frame = video.read()
        if not ok:
            print('Cannot read video file')
            sys.exit()
        # 定义初始边界框
        bbox = (287, 23, 86, 320)
        # Uncomment the line below to select a different bounding box
        # 选择不同的边界框
        bbox = cv2.selectROI(frame, False)
        # Initialize tracker with first frame and bounding box
        # 使用视频的第一帧和边界框初始化跟踪器
        ok = tracker.init(frame, bbox)
        while True:
            # Read a new frame
            ok, frame = video.read()
            if not ok:
                break
            # Start timer 记录开始时间
            timer = cv2.getTickCount()
            # Update tracker 更新检测器
            ok, bbox = tracker.update(frame)
            # Calculate Frames per second (FPS) 计算FPS
            fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);
            # Draw bounding box 绘制边界框
            if ok:
                # Tracking success 跟踪成功
                p1 = (int(bbox[0]), int(bbox[1]))
                p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
                cv2.rectangle(frame, p1, p2, (255, 0, 0), 2, 1)
                print('p1:',p1,'---p2:',p2)
                cv2.putText(frame, tracker_type + " Tracker", p1, cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2);
                # Display FPS on frame 显示FPS
                cv2.putText(frame, "FPS : " + str(int(fps)), p1, cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2);
                # Display result 显示跟踪结果
            else:  # 跟踪失败
                # Tracking failure
                cv2.putText(frame, "Tracking failure detected", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
            # Display tracker type on frame
            # 显示跟踪器的类别
    
            cv2.imshow("Tracking", frame)
            # Exit if ESC pressed 按取消键退出
    
            k = cv2.waitKey(1)
            if k == 27: break  # esc pressed
    

      

  • 相关阅读:
    hdu4587 Two Nodes 求图中删除两个结点剩余的连通分量的数量
    洛谷3388 tarjan割点
    POJ1523 Tarjan求割点以及删除割点之后强连通分量的数量
    POJ1144 tarjan+网络中割点与割边的数量
    POJ1780 欧拉路+手写栈解决爆战问题
    Delphi 窗体函数GetForegroundWindow
    Delphi 窗体函数GetClassName
    Delphi 窗体函数GetDesktopWindow
    Delphi 窗体函数 GetTopWindow、GetNextWindow
    Delphi 调用惯例 register, pascal, cdecl, stdcall, safecall 介绍
  • 原文地址:https://www.cnblogs.com/zjl-0217/p/12978389.html
Copyright © 2011-2022 走看看