zoukankan      html  css  js  c++  java
  • 【JZOJ3297】【SDOI2013】逃考

    题目大意

    给定矩形中的(n)个点,矩形中的任意一个位置被离它最近的点控制,给出起点,求走出这个矩形最少被几个点控制过。
    (n leq 600)

    解析

    借用网上这张酷炫的图

    可以发现,两个点(i,j)的垂直平分线把平面分为两部分,一部分归(i)控制,一部分归(j)控制,而垂直平分线上的点同时被(i,j)控制。

    可见,只有经过两区域边界时答案才会增大。

    那么把(i)与其它所有点的垂直平分线做一遍半平面交,得到(i)的控制区域,同时也能得到控制区域与(i)相邻的点。

    于是我们构建一个图模型,对于控制区域相邻的(i,j),连一条长度为(1)的边,对于靠着矩形边界的区域,向(n+1)连一条长度为(1)的边。输入数据保证一开始只被一个点控制,这个点一定离它最近,暴力求出来即可,然后跑最短路即可求出答案。

    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    typedef double db;
    const int N = 1007;
    const db eps = 1e-6;
    
    int tot, st[N], to[N * N * 2], nx[N * N * 2];
    void add(int u, int v) { to[++tot] = v, nx[tot] = st[u], st[u] = tot; }
    int S, T, head, tail, que[N], dis[N];
    int spfa()
    {
    	memset(dis, 0, sizeof(dis));
    	head = 1, que[tail = 1] = S, dis[S] = 1;
    	while (head <= tail)
    	{
    		int u = que[head++];
    		for (int i = st[u]; i; i = nx[i]) if (!dis[to[i]]) dis[to[i]] = dis[u] + 1, que[++tail] = to[i];
    	}
    	return dis[T] - 1;
    }
    
    int dcmp(db a, db b) { return fabs(a - b) < eps; }
    struct VECTOR
    {
    	db x, y;
    	VECTOR(db X = 0, db Y = 0) { x = X, y = Y; }
    	db getang() { return atan2(y, x); }
    };
    db cross(VECTOR a, VECTOR b) { return a.x * b.y - a.y * b.x; }
    VECTOR operator+(VECTOR a, VECTOR b) { return VECTOR(a.x + b.x, a.y + b.y); }
    VECTOR operator-(VECTOR a, VECTOR b) { return VECTOR(a.x - b.x, a.y - b.y); }
    VECTOR operator*(VECTOR a, db b) { return VECTOR(a.x * b, a.y * b); }
    VECTOR operator/(VECTOR a, db b) { return VECTOR(a.x / b, a.y / b); }
    typedef VECTOR POINT;
    struct LINE
    {
    	POINT s, t;
    	db ang;
    	int tag;
    	LINE() {}
    	LINE(POINT S, POINT T, int ta) { s = S, t = T, ang = (t - s).getang(), tag = ta; }
    };
    int operator<(LINE a, LINE b) { return dcmp(a.ang, b.ang) ? cross(b.t - a.s, a.t - a.s) + eps > 0 : a.ang < b.ang; }
    POINT inter(LINE a, LINE b) { return a.s + (a.t - a.s) * (cross(b.t - b.s, a.s - b.s) / cross(a.t - a.s, b.t - b.s)); }
    int onright(POINT a, LINE b) { return cross(b.t - b.s, a - b.s) < 0; }
    db sqr(db a) { return a * a; }
    db getdis(db x1, db y1, db x2, db y2) { return sqrt(sqr(x1 - x2) + sqr(y1 - y2)); }
    
    LINE l[N];
    int total, n, X0, Y0, X1, Y1, x[N], y[N];
    int cnt;
    
    int h, t;
    LINE q1[N];
    POINT q2[N];
    
    int main()
    {
    	scanf("%d", &total);
    	while (total--)
    	{
    		memset(st, 0, sizeof(st));
    		memset(nx, 0, sizeof(nx));
    		scanf("%d%d%d%d%d", &n, &X1, &Y1, &X0, &Y0);
    		if (!n) { printf("0
    "); continue; }
    		for (int i = 1; i <= n; i++) scanf("%d%d", &x[i], &y[i]);
    		for (int i = 1; i <= n; i++)
    		{
    			cnt = 0;
    			l[++cnt] = LINE(POINT(0, 0), POINT(X1, 0), n + 1);
    			l[++cnt] = LINE(POINT(X1, 0), POINT(X1, Y1), n + 1);
    			l[++cnt] = LINE(POINT(X1, Y1), POINT(0, Y1), n + 1);
    			l[++cnt] = LINE(POINT(0, Y1), POINT(0, 0), n + 1);
    			for (int j = 1; j <= n; j++) if (j != i)
    			{
    				db mx = 1.0 * (x[i] + x[j]) / 2, my = 1.0 * (y[i] + y[j]) / 2;
    				db tx = mx + my - y[j], ty = my + x[j] - mx;
    				l[++cnt] = LINE(POINT(mx, my), POINT(tx, ty), j);
    			}
    			sort(l + 1, l + cnt + 1);
    			h = 1, q1[t = 1] = l[1];
    			for (int i = 2; i <= cnt; i++)
    			{
    				if (dcmp(l[i].ang, l[i - 1].ang)) continue;
    				while (h < t && onright(q2[t - 1], l[i])) t--;
    				while (h < t && onright(q2[h], l[i])) h++;
    				q1[++t] = l[i];
    				if (h < t) q2[t - 1] = inter(q1[t], q1[t - 1]);
    			}
    			while (h < t && onright(q2[t - 1], q1[h])) t--;
    			while (h < t && onright(q2[h], q1[t])) h++;
    			if (t - h <= 1) continue;
    			for (int j = h; j <= t; j++) add(i, q1[j].tag);
    		}
    		S = 1;
    		for (int i = 2; i <= n; i++) if (getdis(x[i], y[i], X0, Y0) < getdis(x[S], y[S], X0, Y0)) S = i;
    		T = n + 1;
    		printf("%d
    ", spfa());
    	}
    	return 0;
    }
    
  • 相关阅读:
    基于Flume做FTP文件实时同步的windows服务。
    Java代码解决ElasticSearch的Result window is too large问题
    springboot+zuul(二)------智能负载
    springboot+zuul(一)------实现自定义过滤器、动态路由、动态负载。
    Docker 快速安装&搭建 Ngnix 环境,并配置反向代理
    如何通过 Freemark 优雅地生成那些花里胡哨的复杂样式 Excel 文件?
    Elasticserach 同步索引报错:ElasticSearch ClusterBlockException[blocked by: [FORBIDDEN/12/index read-only / allow delete (api)]
    如何通过Gitalk评论插件,5分钟为你的博客快速集成评论功能
    一文教您如何通过 Docker 快速搭建各种测试环境(Mysql, Redis, Elasticsearch, MongoDB) | 建议收藏
    Docker 快速安装&搭建 Mysql 环境
  • 原文地址:https://www.cnblogs.com/zjlcnblogs/p/11116838.html
Copyright © 2011-2022 走看看