zoukankan      html  css  js  c++  java
  • C++红黑树(类模板实现)

    红黑树(Red Black Tree)是一种特殊的二叉查找树(Binary Search Tree),满则如下红黑性质的二叉树是红黑树:
    1.每个节点或是红的,或是黑的
    2.根节点是黑的
    3.每个叶节点(NIL)是黑的
    4.如果一个节点是红的,则它的两个儿子都是黑的
    5.对于每个节点,从该节点到其子孙节点的所有路径上包含相同数目的黑节点。
    由于以上的性质,红黑树的效率能保证在log级别,而不会像普通的BST一样退化为线性的O(n)。

    从红黑树的定义可以看出:
    1.红黑树是一棵BST,满足BST的所有性质:左子树所有节点的值都不超过根节点,右子树所有节点的值都不小于根节点;中序遍历是升序的;...
    2.若某节点是红色的,则必有黑父(黑色的父节点,下文中“红父”“黑叔”“红叔”等类推),且其两个子节点必为黑色(包括子节点为哨兵NIL的情况)
    3.不存在两个连续的红色节点相连接,但连续两个黑节点可以存在;
    ...

    在Linux中,不少地方使用了红黑树(C语言实现),在sourceforge等网站上可以参考其代码。


    用C++实现红黑树,网上不少代码都参考了《算法导论》一书,其insert操作的讲解都正确无误,但删除操作总是含混不清,我认为原因在于不少讲解中都忽略了以下几点:
    1.叶子节点(NIL)是哨兵,不是NULL,两者不应混淆
    2.叶节点不应该被忽略(例如“人”子型的树,不是红黑树)

    ok,明确以上两点过后,实现一棵红黑树应该不会太难了,下面贴出从罗索实验室找到的代码,链接的地址是http://www.rosoo.net/a/201207/16151.html

    #pragma once
    #ifdef MY_DEBUG
    #include
    #include "assert.h"
    #endif //MY_DEBUG
    namespace ScanbuyLib{
        enum rg_color  { black, red } ;
        enum e_balance { left_higher, equal_height, right_higher };
        enum e_return  { e_success, e_fail, e_empty, e_duplicate, e_not_found };
        enum e_order   { e_preorder, e_inorder, e_postorder };
        template class RBTreeNode
        {
        public:
            RBTreeNode(rg_color color = black);
            RBTreeNode(const K& key, const V& value, rg_color color= black);
        public:
            RBTreeNode* m_pRChild;
            RBTreeNode* m_pLChild;
            RBTreeNode* m_pParent;
            K key;
            V value;
            rg_color color;
        };
        template RBTreeNode::RBTreeNode(rg_color color)
        {
            m_pRChild = NULL;
            m_pLChild = NULL;
            m_pParent = NULL;
    //        key = K(0);
    //        value = V(0);
            this->color = color;
        }
        templateRBTreeNode::RBTreeNode(const K& key, const V& value, rg_color color)
        {
            m_pRChild = NULL;
            m_pLChild = NULL;
            m_pParent = NULL;
            this->key = key;
            this->value = value;
            this->color = color;
        }
        template class RedBlackTree
        {
        public:
            RedBlackTree();
            ~RedBlackTree();
            e_return insert(const K& key, const V& value);
            e_return remove(const K& key);
            e_return search(const K& key, V& value); // value as output
        private:
           
            void destroy(RBTreeNode* pNode);
            // make copy constructor and = operator private currently.
            RedBlackTree(const RedBlackTree&);
            RedBlackTree& operator = (const RedBlackTree& other);
           
            RBTreeNode* getGrandParent(RBTreeNode* pNode);
            RBTreeNode* getUncle(RBTreeNode* pNode);   
            RBTreeNode* getSibling(RBTreeNode* pNode);
    #ifdef MY_DEBUG
            bool checkCorrectNess();
    #endif //MY_DEBUG
            void insertFixup(RBTreeNode* pNode);
            void removeFixup(RBTreeNode* pNode);
            void rotateLeft (RBTreeNode* pNode);
            void rotateRight(RBTreeNode* pNode);
            RBTreeNode* m_pRoot;
            RBTreeNode* m_pSentinel;
        };
    
        template RedBlackTree::RedBlackTree()
        {
            // first instantiate the sentinel node, then make it root as sentinel
            m_pSentinel = new RBTreeNode();
            m_pSentinel->m_pLChild = NULL;
            m_pSentinel->m_pRChild = NULL;
            m_pSentinel->m_pParent = NULL;
            m_pSentinel->color = black;
            m_pRoot = m_pSentinel;
        }
        template RedBlackTree::~RedBlackTree()
        {
            // TODO, need to add it once really use it!!!!
            destroy(m_pRoot);
            if (m_pSentinel)
            {
                delete m_pSentinel;
                m_pSentinel = NULL;
            }
        }
       
        template   void RedBlackTree::destroy(RBTreeNode* pNode)
        {
            if (pNode != NULL && pNode != m_pSentinel)
            {
                destroy(pNode->m_pLChild);
                destroy(pNode->m_pRChild);   
                delete pNode;
                pNode = NULL;
            }
        }
        template   RBTreeNode* RedBlackTree::getGrandParent(RBTreeNode* pNode)
        {
            if (pNode && pNode->m_pParent)
                return pNode->m_pParent->m_pParent;
            else
                return NULL;
        }
        template RBTreeNode* RedBlackTree::getUncle(RBTreeNode* pNode)
        {
            RBTreeNode* pTemp = getGrandParent(pNode);
            if (pTemp == NULL)
                return NULL; // No grandparent means no uncle
            if (pNode->m_pParent == pTemp->m_pLChild)
                return pTemp->m_pRChild;
            else
                return pTemp->m_pLChild;
        }
        template RBTreeNode* RedBlackTree::getSibling(RBTreeNode* pNode)
        {
            if (pNode == NULL || pNode->m_pParent == NULL) return NULL;
            if (pNode == pNode->m_pParent->m_pLChild)
                return pNode->m_pParent->m_pRChild;
            else
                return pNode->m_pParent->m_pLChild;
        }
    
        template void RedBlackTree::rotateLeft(RBTreeNode* pNode)
        {
            if (pNode == NULL || pNode->m_pRChild == NULL)
                return;
            else
            {
                RBTreeNode* pTemp = pNode->m_pRChild;
                pNode->m_pRChild = pTemp->m_pLChild;
                if (pTemp->m_pLChild)
                    pTemp->m_pLChild->m_pParent = pNode;
                if (pNode == m_pRoot)
                {
                    m_pRoot = pTemp;
                    pTemp->m_pParent = NULL;
                }
                else
                {
                    pTemp->m_pParent= pNode->m_pParent;      
                    if (pNode == pNode->m_pParent->m_pLChild)
                    {
                        pNode->m_pParent->m_pLChild = pTemp;
                    }
                    else
                    {
                        pNode->m_pParent->m_pRChild = pTemp;
                    }
                }
                pTemp->m_pLChild = pNode;
                pNode->m_pParent = pTemp;
            }
        }
        template void RedBlackTree::rotateRight(RBTreeNode* pNode)
        {
            if (pNode == NULL || pNode->m_pLChild == NULL)
                return;
            else
            {
                RBTreeNode* pTemp = pNode->m_pLChild;
                pNode->m_pLChild = pTemp->m_pRChild;
                if (pTemp->m_pRChild)
                    pTemp->m_pRChild->m_pParent = pNode;
                if (pNode == m_pRoot)
                {
                    m_pRoot = pTemp;
                    pTemp->m_pParent = NULL;
                }
                else
                {
                    //update the parent
                    pTemp->m_pParent= pNode->m_pParent;      
                    if (pNode == pNode->m_pParent->m_pLChild)
                    {
                        pNode->m_pParent->m_pLChild = pTemp;
                    }
                    else
                    {
                        pNode->m_pParent->m_pRChild = pTemp;
                    }            
                }
                pTemp->m_pRChild = pNode;
                pNode->m_pParent = pTemp;
            }
        }
        template e_return RedBlackTree::insert(const K& key, const V& value)
        {
            RBTreeNode* pTemp = m_pRoot;
            RBTreeNode* pParent = NULL;
            // init the new node here
            RBTreeNode* pNew = new RBTreeNode(key, value);
            pNew->color = red;
            pNew->m_pLChild = m_pSentinel;
            pNew->m_pRChild = m_pSentinel;
            // find the insert point
            while (pTemp != m_pSentinel)
            {
                pParent = pTemp;
                if (pTemp->key == key)
                {
                    delete pNew;
                    return e_duplicate;
                }
                pTemp = pTemp->key > key ? pTemp->m_pLChild: pTemp->m_pRChild;       
            }
            if (m_pRoot == m_pSentinel)
            {
                m_pRoot = pNew;
                m_pRoot->m_pParent = NULL;
            }
            else
            {
                pNew->m_pParent = pParent;
                if ( pParent->key > key )
                {
                    pParent->m_pLChild= pNew;
                }
                else
                {
                    pParent->m_pRChild= pNew;
                }   
            }
            insertFixup(pNew);
            //        insertCase1(pNew);
    #ifdef MY_DEBUG       
            assert(checkCorrectNess());
    #endif//MY_DEBUG
            return e_success;
        }
        template void RedBlackTree::insertFixup(RBTreeNode* pNode)
        {
            if (pNode == NULL) return; // impossible actually.
            RBTreeNode* pUncle = m_pSentinel;
            RBTreeNode* pGrandParent = NULL;
            while (pNode != m_pRoot && red == pNode->m_pParent->color)
            {
                pUncle = getUncle(pNode);
                pGrandParent = getGrandParent(pNode);
                if (pUncle != m_pSentinel && pUncle->color == red)
                {
                    pNode->m_pParent->color = black;
                    pUncle->color = black;
                    pGrandParent->color = red;
                    pNode = pGrandParent;
                }
                else
                {
                    if (pNode->m_pParent == pGrandParent->m_pLChild)   
                    {
                        if (pNode == pNode->m_pParent->m_pRChild)
                        {
                            pNode = pNode->m_pParent;
                            rotateLeft(pNode);
                        }
                        pNode->m_pParent->color = black;
                        pGrandParent->color = red;
                        rotateRight(pGrandParent);
                    }
                    else
                    {
                        if (pNode == pNode->m_pParent->m_pLChild)
                        {
                            pNode = pNode->m_pParent;
                            rotateRight(pNode);
                        }
                        pNode->m_pParent->color = black;
                        pGrandParent->color = red;
                        rotateLeft(pGrandParent);
                    }
                }
            }
            m_pRoot->color = black;
        }
        template e_return RedBlackTree::remove(const K& key)
        {
            // currently we won't use the
            if (!m_pRoot) return e_empty;
            RBTreeNode* pd = m_pRoot; // pd means pointer to the node deleted (with the same data with param:data)
            while (pd != m_pSentinel)
            {
                if (pd->key > key)
                    pd = pd->m_pLChild;
                else if (pd->key < key)
                    pd = pd->m_pRChild;
                else
                    break; // equal so we find it!!!
            }
            if (pd == m_pSentinel) //haven't find it
                return e_not_found;
            // delete is not the real node to delete, but find a sub to replace and remove the sub
            RBTreeNode* pSub = NULL; // pSub is the really node to be sub
            // we can either find the max left child or min right child to sub
            // let's choose max left child here
            if (pd->m_pLChild == m_pSentinel && pd->m_pRChild == m_pSentinel)
                pSub = pd;
            else if (pd->m_pLChild == m_pSentinel)
                pSub = pd->m_pRChild;
            else if (pd->m_pRChild == m_pSentinel)
                pSub = pd->m_pLChild;
            else
            {
                pSub = pd->m_pLChild;
                // let's find the max left child
                while (pSub->m_pRChild != m_pSentinel)
                {
                    pSub = pSub->m_pRChild;
                }
            }
            // replace the pd data with pSub's
            if (pd != pSub)
            {
                pd->key = pSub->key;
                pd->value = pSub->value;
            }
            // then find the child of sub and replace with sub
            RBTreeNode* pSubChild = pSub->m_pRChild != m_pSentinel ? pSub->m_pRChild: pSub->m_pLChild;
            if (pSub->m_pParent)
            {
                if (pSub == pSub->m_pParent->m_pLChild)
                    pSub->m_pParent->m_pLChild = pSubChild;
                else
                    pSub->m_pParent->m_pRChild = pSubChild;
            }
            else
            {
                m_pRoot = pSubChild;
            }
            //this may change the sentinel's parent to not-null value, will change to NULL later
            pSubChild->m_pParent = pSub->m_pParent;
            if (pSub->color == black)
                removeFixup(pSubChild);
            if (pSub)
            {
                delete pSub;
                pSub = NULL;
            }
            // rollback sentinel's parent to NULL;
            m_pSentinel->m_pParent = NULL;
    #ifdef MY_DEBUG
            assert(checkCorrectNess());
    #endif //MY_DEBUG
            return e_success;
        }
        template void RedBlackTree::removeFixup(RBTreeNode* pNode)
        {
            RBTreeNode* pSibling = NULL;
            while ((pNode != m_pRoot) && (pNode->color == black))
            {
                pSibling = getSibling(pNode);
                if (pNode == pNode->m_pParent->m_pLChild) // left child node
                {
                    if (pSibling->color == red)
                    {
                        // case 1, can change to case 2, 3, 4
                        pNode->m_pParent->color = red;
                        pSibling->color = black;
                        rotateLeft(pNode->m_pParent);
                        // change to new sibling,
                        pSibling = pNode->m_pParent->m_pRChild;
                    }
                    // case 2;
                    if ((black == pSibling->m_pLChild->color) && (black == pSibling->m_pRChild->color))
                    {
                        pSibling->color = red;
                        pNode = pNode->m_pParent;
                    }
                    else
                    {
                        if (black == pSibling->m_pRChild->color)
                        {
                            pSibling->color = red;
                            pSibling->m_pLChild->color = black;
                            rotateRight(pSibling);
                            pSibling = pNode->m_pParent->m_pRChild;
                        }
                        pSibling->color = pNode->m_pParent->color;
                        pNode->m_pParent->color = black;
                        pSibling->m_pRChild->color = black;
                        rotateLeft(pNode->m_pParent);
                        break;
                    }
                }
                else
                {
                    if (pSibling->color == red)
                    {
                        // case 1, can change to case 2, 3, 4
                        pNode->m_pParent->color = red;
                        pSibling->color = black;
                        rotateRight(pNode->m_pParent);
                        // change to new sibling,
                        pSibling = pNode->m_pParent->m_pLChild;
                    }
                    // case 2;
                    if ((black == pSibling->m_pLChild->color) && (black == pSibling->m_pRChild->color))
                    {
                        pSibling->color = red;
                        pNode = pNode->m_pParent;
                    }
                    else
                    {
                        if (black == pSibling->m_pLChild->color)
                        {
                            pSibling->color = red;
                            pSibling->m_pRChild->color = black;
                            rotateLeft(pSibling);
                            pSibling = pNode->m_pParent->m_pLChild;
                        }
                        pSibling->color = pNode->m_pParent->color;
                        pNode->m_pParent->color = black;
                        pSibling->m_pLChild->color = black;
                        rotateRight(pNode->m_pParent);
                        break;
                    }
                }
            }
            pNode->color = black;
        }
    
        template e_return RedBlackTree::search(const K& key, V& value) // value as output
        {
            if (!m_pRoot) return e_empty;
           
            RBTreeNode* pTemp = m_pRoot;
            while (pTemp != m_pSentinel)
            {
                if (pTemp->key < key)
                    pTemp = pTemp->m_pRChild;
                else if (pTemp->key > key)
                    pTemp = pTemp->m_pLChild;
                else
                    break;
            }
            if (pTemp != m_pSentinel)
            {
                //find it now!
                value = pTemp->value;
                return e_success;
            }
            else
            {
                return e_not_found;
            }
        }
    #ifdef MY_DEBUG
        template bool RedBlackTree::checkCorrectNess()
        {
            if (!m_pRoot)
                return true;
            bool bRet = true;
            // check if the root color is black
            if (m_pRoot && m_pRoot->color == red)
                bRet = false;
            // check red node with black child
            std::queue< RBTreeNode* > oQueue;                                  
            oQueue.push( m_pRoot );
            int nCurLevelCount = 1;
            int length = -1;
            while (true)
            {
                int nNextLevelCount     = 0;      
                while (nCurLevelCount)
                {
                    RBTreeNode* pNode = oQueue.front();
                    nCurLevelCount -- ;
                    if(pNode->color == red)
                    {
                        // child color is black
                        if ((pNode->m_pLChild && pNode->m_pLChild->color == red) ||
                            (pNode->m_pRChild && pNode->m_pRChild->color == red))
                        {
                            bRet = false;
                            break;
                        }   
                    }
                    if ( !pNode->m_pLChild && !pNode->m_pRChild)
                    {
                        // this is the leaf node, check the path root
                        int len = 0;
                        RBTreeNode* pTemp = pNode;
                        while (pTemp->m_pParent)
                        {
                            if (pTemp->color == black)
                                len ++ ;
                            pTemp = pTemp->m_pParent;
                        }
                        if (length == -1)
                            length = len;
                        else
                        {
                            if (len != length)
                            {
                                bRet = false;
                                break;
                            }
                        }
                    }
                    if (pNode->m_pLChild)
                    {
                        oQueue.push( pNode->m_pLChild );
                        nNextLevelCount++;    
                    }
                    if (pNode->m_pRChild)
                    {
                        oQueue.push( pNode->m_pRChild );
                        nNextLevelCount++;    
                    }
                    oQueue.pop();
                }
                if (!bRet)
                    break;
                nCurLevelCount = nNextLevelCount;
                if (!nCurLevelCount)
                    break;
            }
            return bRet;
        }
    #endif //MY_DEBUG
    }




    当然,网上还是有很多其他人的博客可以参考的,这里简单列举:
    http://blog.csdn.net/v_july_v/article/details/6105630  July的博客
    http://saturnman.blog.163.com/    saturman的博客
    http://www.cppblog.com/converse/archive/2012/11/27/66530.html#195744   那谁的博客
    http://lxr.linux.no/#linux+v3.7.1/lib/rbtree.c           linux的rbtree代码

    此外,读者可以参考
    《算法导论》(建议看一下英文版的)
    http://zh.wikipedia.org/wiki/红黑树
    http://en.wikipedia.org/wiki/Red–black_tree

    个人推荐维基百科英文的讲解,分case讲解很清晰,而且求节点的grandfather等的操作也很安全。

  • 相关阅读:
    Hadoop编码解码【压缩解压缩】机制详解(1)
    Hadoop编码解码【压缩解压缩】机制详解(1)
    Hadoop IO 特性详解(2)【文件校验】
    Hadoop IO 特性详解(2)
    spring mvc default-servlet mvc:resources mvc:default-servlet-handler区别
    spring mvc default-servlet mvc:resources mvc:default-servlet-handler区别
    Hadoop IO 特性详解(1)
    Hadoop IO 特性详解(1)【数据完整性】
    189. Rotate Array
    435. Non-overlapping Intervals
  • 原文地址:https://www.cnblogs.com/zjutzz/p/3207895.html
Copyright © 2011-2022 走看看