zoukankan      html  css  js  c++  java
  • STM32对HAL库的串口不定长度的读写操作(一)

    这几天终于开始接触HAL库,随着固件库被逐渐淘汰,尽管很多人说用STM32CUBEMX不能很好地学习stm32,但这肯定是一个趋势,所以用好HAL库十分得重要。

       这几天也学到了简单地操作cubemx这个软件,这里不做教学,因为百度很多,虽然很杂乱,但是总能找到的。HAL库的应用与固件库在一些特定函数上不一样。举几个我目前遇到的例子。

      

     再弄跑马灯时需要用到翻转的程序,HAL库有自带的翻转函数,使用方便。

     延时函数也有自带。

    串口读写,个人理解来说,串口分为三种,1、普通的串口写入 2、串口中断的读和写 3、串口中断与DMA

    现在还没接触到DMA,后续再补上。

    1、普通的串口写入,

     HAL库有特定函数将数据传入特定的串口,用上位机软件即可读到函数传输的数据。

    2、串口中断的读和写

      

    /* USER CODE BEGIN Header */
    /**
      ******************************************************************************
      * @file           : main.c
      * @brief          : Main program body
      ******************************************************************************
      * @attention
      *
      * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
      * All rights reserved.</center></h2>
      *
      * This software component is licensed by ST under BSD 3-Clause license,
      * the "License"; You may not use this file except in compliance with the
      * License. You may obtain a copy of the License at:
      *                        opensource.org/licenses/BSD-3-Clause
      *
      ******************************************************************************
      */
    /* USER CODE END Header */
    
    /* Includes ------------------------------------------------------------------*/
    #include "main.h"
    
    /* Private includes ----------------------------------------------------------*/
    /* USER CODE BEGIN Includes */
    
    /* USER CODE END Includes */
    
    /* Private typedef -----------------------------------------------------------*/
    /* USER CODE BEGIN PTD */
    
    /* USER CODE END PTD */
    
    /* Private define ------------------------------------------------------------*/
    /* USER CODE BEGIN PD */
    
    /* USER CODE END PD */
    
    /* Private macro -------------------------------------------------------------*/
    /* USER CODE BEGIN PM */
    
    /* USER CODE END PM */
    
    /* Private variables ---------------------------------------------------------*/
    UART_HandleTypeDef huart1;
    
    /* USER CODE BEGIN PV */
    
    /* USER CODE END PV */
    
    /* Private function prototypes -----------------------------------------------*/
    void SystemClock_Config(void);
    static void MX_GPIO_Init(void);
    static void MX_USART1_UART_Init(void);
    /* USER CODE BEGIN PFP */
    
    /* USER CODE END PFP */
    
    /* Private user code ---------------------------------------------------------*/
    /* USER CODE BEGIN 0 */
                uint8_t dd[10];
                //uint8_t dd;
                uint8_t ff[]="send!";
    /* USER CODE END 0 */
    
    /**
      * @brief  The application entry point.
      * @retval int
      */
    int main(void)
    {
      /* USER CODE BEGIN 1 */
    
      /* USER CODE END 1 */
      
    
      /* MCU Configuration--------------------------------------------------------*/
    
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
      HAL_Init();
    
      /* USER CODE BEGIN Init */
    
      /* USER CODE END Init */
    
      /* Configure the system clock */
      SystemClock_Config();
    
      /* USER CODE BEGIN SysInit */
    
      /* USER CODE END SysInit */
    
      /* Initialize all configured peripherals */
      MX_GPIO_Init();
      MX_USART1_UART_Init();
      /* USER CODE BEGIN 2 */
                uint8_t aa[] = "key0";
                uint8_t bb[] = "key1";
                uint8_t cc[] = "wkup_pres";
                //uint8_t dd[20];
      /* USER CODE END 2 */
    
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
        HAL_UART_Receive_IT(&huart1, dd, 1);
      while (1)
      {
         
            int key = 0;
            key=KEY_Scan(0);
        /* USER CODE END WHILE */
    
        /* USER CODE BEGIN 3 */
            switch(key)
            {                 
                case KEY0_PRES:
                    //LED0=!LED0;
                HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_8);
                HAL_UART_Transmit(&huart1, aa, sizeof(aa), 0xffff);
                    break;
                case KEY1_PRES:
                //    LED1=!LED1;
                    HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_2);
                HAL_UART_Transmit(&huart1, bb, sizeof(bb), 0xffff);
                    break;
                case WKUP_PRES:                
                //    LED0=!LED0;
                //    LED1=!LED1;
                    HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_8);
                    HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_2);
                HAL_UART_Transmit(&huart1, cc, sizeof(cc), 0xffff);
                //HAL_Delay(100);
                //HAL_UART_Transmit(&huart1, cc, sizeof(cc), 0xffff);
    //            HAL_UART_Transmit(&huart1, aa, sizeof(aa), 0xffff);
    //            HAL_UART_Transmit(&huart1, bb, sizeof(bb), 0xffff);
                    break;
                default:
                    HAL_Delay(10);
            }
            //HAL_UART_Receive_IT(&huart1, dd, 1);
      }
      /* USER CODE END 3 */
    }
    
    /**
      * @brief System Clock Configuration
      * @retval None
      */
    void SystemClock_Config(void)
    {
      RCC_OscInitTypeDef RCC_OscInitStruct = {0};
      RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
    
      /** Initializes the CPU, AHB and APB busses clocks 
      */
      RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
      RCC_OscInitStruct.HSIState = RCC_HSI_ON;
      RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
      RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
      if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
      {
        Error_Handler();
      }
      /** Initializes the CPU, AHB and APB busses clocks 
      */
      RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                                  |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
      RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
      RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
      RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
      RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    
      if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
      {
        Error_Handler();
      }
    }
    
    /**
      * @brief USART1 Initialization Function
      * @param None
      * @retval None
      */
    static void MX_USART1_UART_Init(void)
    {
    
      /* USER CODE BEGIN USART1_Init 0 */
    
        
      /* USER CODE END USART1_Init 0 */
    
      /* USER CODE BEGIN USART1_Init 1 */
    
      /* USER CODE END USART1_Init 1 */
      huart1.Instance = USART1;
      huart1.Init.BaudRate = 9600;
      huart1.Init.WordLength = UART_WORDLENGTH_8B;
      huart1.Init.StopBits = UART_STOPBITS_1;
      huart1.Init.Parity = UART_PARITY_NONE;
      huart1.Init.Mode = UART_MODE_TX_RX;
      huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
      huart1.Init.OverSampling = UART_OVERSAMPLING_16;
      if (HAL_UART_Init(&huart1) != HAL_OK)
      {
        Error_Handler();
      }
      /* USER CODE BEGIN USART1_Init 2 */
    
      /* USER CODE END USART1_Init 2 */
    
    }
    
    /**
      * @brief GPIO Initialization Function
      * @param None
      * @retval None
      */
    static void MX_GPIO_Init(void)
    {
      GPIO_InitTypeDef GPIO_InitStruct = {0};
    
      /* GPIO Ports Clock Enable */
      __HAL_RCC_GPIOD_CLK_ENABLE();
      __HAL_RCC_GPIOA_CLK_ENABLE();
      __HAL_RCC_GPIOC_CLK_ENABLE();
    
      /*Configure GPIO pin Output Level */
      HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET);
    
      /*Configure GPIO pin Output Level */
      HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, GPIO_PIN_RESET);
    
      /*Configure GPIO pin : WK_UP_Pin */
      GPIO_InitStruct.Pin = WK_UP_Pin;
      GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
      GPIO_InitStruct.Pull = GPIO_PULLDOWN;
      HAL_GPIO_Init(WK_UP_GPIO_Port, &GPIO_InitStruct);
    
      /*Configure GPIO pin : KEY0_Pin */
      GPIO_InitStruct.Pin = KEY0_Pin;
      GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
      GPIO_InitStruct.Pull = GPIO_PULLUP;
      HAL_GPIO_Init(KEY0_GPIO_Port, &GPIO_InitStruct);
    
      /*Configure GPIO pin : PA8 */
      GPIO_InitStruct.Pin = GPIO_PIN_8;
      GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
      GPIO_InitStruct.Pull = GPIO_NOPULL;
      GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
      HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
    
      /*Configure GPIO pin : KEY1_Pin */
      GPIO_InitStruct.Pin = KEY1_Pin;
      GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
      GPIO_InitStruct.Pull = GPIO_PULLUP;
      HAL_GPIO_Init(KEY1_GPIO_Port, &GPIO_InitStruct);
    
      /*Configure GPIO pin : PD2 */
      GPIO_InitStruct.Pin = GPIO_PIN_2;
      GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
      GPIO_InitStruct.Pull = GPIO_NOPULL;
      GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
      HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
    
    }
    
    /* USER CODE BEGIN 4 */
    int KEY_Scan(int mode)
    {     
        static int key_up=1;//按键按松开标志
        if(mode)
         key_up=1;  //支持连按          
        if(key_up&&(KEY0==0||KEY1==0||WK_UP==1))
        {
            HAL_Delay(10);//去抖动 
            key_up=0;
            if(KEY0==0)return KEY0_PRES;
            else if(KEY1==0)return KEY1_PRES;
            else if(WK_UP==1)return WKUP_PRES; 
        }else if(KEY0==1&&KEY1==1&&WK_UP==0)key_up=1;          
        return 0;// 无按键按下
    }
    
    void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
    {
            UNUSED(huart);
            HAL_UART_Transmit(&huart1, dd, 1, 0xffff);
            HAL_UART_Receive_IT(&huart1,dd, 1);
         //memset(dd, 0x00, sizeof(dd));
    }
    /* USER CODE END 4 */
    
    /**
      * @brief  This function is executed in case of error occurrence.
      * @retval None
      */
    void Error_Handler(void)
    {
      /* USER CODE BEGIN Error_Handler_Debug */
      /* User can add his own implementation to report the HAL error return state */
    
      /* USER CODE END Error_Handler_Debug */
    }
    
    #ifdef  USE_FULL_ASSERT
    /**
      * @brief  Reports the name of the source file and the source line number
      *         where the assert_param error has occurred.
      * @param  file: pointer to the source file name
      * @param  line: assert_param error line source number
      * @retval None
      */
    void assert_failed(uint8_t *file, uint32_t line)
    { 
      /* USER CODE BEGIN 6 */
      /* User can add his own implementation to report the file name and line number,
         tex: printf("Wrong parameters value: file %s on line %d
    ", file, line) */
      /* USER CODE END 6 */
    }
    #endif /* USE_FULL_ASSERT */
    
    /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
    main.c

    这里插入串口读写的main文件,程序先无视按键KEY的作用,直接看到

     在串口接收外部如上位机发送的数据时需要用HAL库的这个函数接收数据,可设置特定的串口和接收到哪个位置,以及接收数据的长度。若你直接把接收的数据transmit 出去,也可以做到,但是得是定长度的读写操作,不然会出现溢出或者是数据缺失的现象。

    今天遇到这个问题,百度找了很多相关的,大多方法都特别复杂,很多也是通过DMA来解决的,后来发现一中方法。在receive_IT执行完毕后,会进入一个回调函数(需要自己重新声明出来),

     若在回调函数中发送其中一个字节,在接收,又会调用这个回调函数,反复之后就可以把读到的数据全部放入dd 中,最后发给串口。这种递归思想很好,实现了不定长度的读写。

    对于这个回调函数和中断函数的区别没怎么分清,串口中断函数可能多用于执行其他操作吧,回调函数多用于此读取操作吧,个人猜测。

    在(二)中简单解析个人写的C#上位机软件,与stm32实现数据读写操作。

  • 相关阅读:
    python 迭代器
    python 装饰器
    python 函数进阶
    python 函数
    python文件操作
    python 集合 深浅拷贝
    python基础之循环
    python基础之字典
    python基础之操作列表
    python基础之列表
  • 原文地址:https://www.cnblogs.com/zjx123/p/11861964.html
Copyright © 2011-2022 走看看