zoukankan      html  css  js  c++  java
  • prometheus告警

    安装配置kube-state-metrics组件

    kube-state-metrics是什么?

    kube-state-metrics通过监听API Server生成有关资源对象的状态指标,比如Deployment、Node、Pod,需要注意的是kube-state-metrics只是简单的提供一个metrics数据,并不会存储这些指标数据,所以我们可以使用Prometheus来抓取这些数据然后存储,主要关注的是业务相关的一些元数据,比如Deployment、Pod、副本状态等;调度了多少个replicas?现在可用的有几个?多少个Pod是running/stopped/terminated状态?Pod重启了多少次?我有多少job在运行中。

    安装kube-state-metrics组件

    1)创建sa,并对sa授权

    在k8s的master1节点生成一个kube-state-metrics-rbac.yaml文件

    cat > kube-state-metrics-rbac.yaml <<EOF
    ---
    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: kube-state-metrics
      namespace: kube-system
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRole
    metadata:
      name: kube-state-metrics
    rules:
    - apiGroups: [""]
      resources: ["nodes", "pods", "services", "resourcequotas", "replicationcontrollers", "limitranges", "persistentvolumeclaims", "persistentvolumes", "namespaces", "endpoints"]
      verbs: ["list", "watch"]
    - apiGroups: ["extensions"]
      resources: ["daemonsets", "deployments", "replicasets"]
      verbs: ["list", "watch"]
    - apiGroups: ["apps"]
      resources: ["statefulsets"]
      verbs: ["list", "watch"]
    - apiGroups: ["batch"]
      resources: ["cronjobs", "jobs"]
      verbs: ["list", "watch"]
    - apiGroups: ["autoscaling"]
      resources: ["horizontalpodautoscalers"]
      verbs: ["list", "watch"]
    ---
    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRoleBinding
    metadata:
      name: kube-state-metrics
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: kube-state-metrics
    subjects:
    - kind: ServiceAccount
      name: kube-state-metrics
      namespace: kube-system
    EOF
    

     通过kubectl apply更新yaml文件

    kubectl apply -f kube-state-metrics-rbac.yaml
    2)安装kube-state-metrics组件

    在k8s的master1节点生成一个kube-state-metrics-deploy.yaml文件

    cat > kube-state-metrics-deploy.yaml <<EOF
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: kube-state-metrics
      namespace: kube-system
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: kube-state-metrics
      template:
        metadata:
          labels:
            app: kube-state-metrics
        spec:
          serviceAccountName: kube-state-metrics
          containers:
          - name: kube-state-metrics
    #        image: gcr.io/google_containers/kube-state-metrics-amd64:v1.3.1
            image: quay.io/coreos/kube-state-metrics:v1.9.0
            ports:
            - containerPort: 8080
    EOF
    

    通过kubectl apply更新yaml文件

    kubectl apply -f kube-state-metrics-deploy.yaml

    查看kube-state-metrics是否部署成功

    kubectl get pods -n kube-system

    显示如下,看到pod处于running状态,说明部署成功

    kube-state-metrics-79c9686b96-4njrs   1/1     Running   0          76s
    

     3)创建service
    在8s的master1节点生成一个kube-state-metrics-svc.yaml文件

    cat >kube-state-metrics-svc.yaml <<EOF
    apiVersion: v1
    kind: Service
    metadata:
      annotations:
        prometheus.io/scrape: 'true'
      name: kube-state-metrics
      namespace: kube-system
      labels:
        app: kube-state-metrics
    spec:
      ports:
      - name: kube-state-metrics
        port: 8080
        protocol: TCP
      selector:
        app: kube-state-metrics
    EOF
    

    通过kubectl apply更新yaml

    kubectl apply -f kube-state-metrics-svc.yaml

    查看service是否创建成功

    kubectl get svc -n kube-system | grep kube-state-metrics

    显示如下,说明创建成功

    kube-state-metrics   ClusterIP   10.105.53.102    <none>        8080/TCP   
    

     在grafana web界面导入Kubernetes Cluster (Prometheus)-1577674936972.json,出现如下页面

    在grafana web界面导入Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json,出现如下页面

    Kubernetes Cluster (Prometheus)-1577674936972.json和Kubernetes cluster monitoring (via Prometheus) (k8s 1.16)-1577691996738.json文件在百度网盘,地址如下:

    链接:https://pan.baidu.com/s/1QAMqT8scsXx-lzEPI6MPgA 提取码:i4yd

    安装和配置Alertmanager-发送报警到qq邮箱

    在k8s的master1节点创建alertmanager-cm.yaml文件

    cat >alertmanager-cm.yaml <<EOF
    kind: ConfigMap
    apiVersion: v1
    metadata:
      name: alertmanager
      namespace: monitor-sa
    data:
      alertmanager.yml: |-
        global:
          resolve_timeout: 1m
          smtp_smarthost: 'smtp.163.com:25'
          smtp_from: '15011572657@163.com'
          smtp_auth_username: '15011572657'
          smtp_auth_password: 'BDBPRMLNZGKWRFJP'
          smtp_require_tls: false
        route:
          group_by: [alertname]
          group_wait: 10s
          group_interval: 10s
          repeat_interval: 10m
          receiver: default-receiver
        receivers:
        - name: 'default-receiver'
          email_configs:
          - to: '1980570647@qq.com'
            send_resolved: true
    EOF
    

    通过kubectl apply 更新文件

    kubectl apply -f alertmanager-cm.yaml

    alertmanager配置文件解释说明:

    smtp_smarthost: 'smtp.163.com:25'

    #用于发送邮件的邮箱的SMTP服务器地址+端口

    smtp_from: '15011572657@163.com'

    #这是指定从哪个邮箱发送报警smtp_auth_username: '15011572657'

    #这是发送邮箱的认证用户,不是邮箱名

    smtp_auth_password: 'BDBPRMLNZGKWRFJP'

    #这是发送邮箱的授权码而不是登录密码

    email_configs:   

    - to: '1980570647@qq.com'

    #to后面指定发送到哪个邮箱,我发送到我的qq邮箱,大家需要写自己的邮箱地址,不应该跟smtp_from的邮箱名字重复

    在k8s的master1节点重新生成一个prometheus-cfg.yaml文件

    cat prometheus-cfg.yaml

    kind: ConfigMap
    apiVersion: v1
    metadata:
      labels:
        app: prometheus
      name: prometheus-config
      namespace: monitor-sa
    data:
      prometheus.yml: |
        rule_files:
        - /etc/prometheus/rules.yml
        alerting:
          alertmanagers:
          - static_configs:
            - targets: ["localhost:9093"]
        global:
          scrape_interval: 15s
          scrape_timeout: 10s
          evaluation_interval: 1m
        scrape_configs:
        - job_name: 'kubernetes-node'
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - source_labels: [__address__]
            regex: '(.*):10250'
            replacement: '${1}:9100'
            target_label: __address__
            action: replace
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
        - job_name: 'kubernetes-node-cadvisor'
          kubernetes_sd_configs:
          - role:  node
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
          - target_label: __address__
            replacement: kubernetes.default.svc:443
          - source_labels: [__meta_kubernetes_node_name]
            regex: (.+)
            target_label: __metrics_path__
            replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
        - job_name: 'kubernetes-apiserver'
          kubernetes_sd_configs:
          - role: endpoints
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          relabel_configs:
          - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
            action: keep
            regex: default;kubernetes;https
        - job_name: 'kubernetes-service-endpoints'
          kubernetes_sd_configs:
          - role: endpoints
          relabel_configs:
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
            action: keep
            regex: true
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
            action: replace
            target_label: __scheme__
            regex: (https?)
          - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
            action: replace
            target_label: __metrics_path__
            regex: (.+)
          - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
            action: replace
            target_label: __address__
            regex: ([^:]+)(?::d+)?;(d+)
            replacement: $1:$2
          - action: labelmap
            regex: __meta_kubernetes_service_label_(.+)
          - source_labels: [__meta_kubernetes_namespace]
            action: replace
            target_label: kubernetes_namespace
          - source_labels: [__meta_kubernetes_service_name]
            action: replace
            target_label: kubernetes_name 
        - job_name: kubernetes-pods
          kubernetes_sd_configs:
          - role: pod
          relabel_configs:
          - action: keep
            regex: true
            source_labels:
            - __meta_kubernetes_pod_annotation_prometheus_io_scrape
          - action: replace
            regex: (.+)
            source_labels:
            - __meta_kubernetes_pod_annotation_prometheus_io_path
            target_label: __metrics_path__
          - action: replace
            regex: ([^:]+)(?::d+)?;(d+)
            replacement: $1:$2
            source_labels:
            - __address__
            - __meta_kubernetes_pod_annotation_prometheus_io_port
            target_label: __address__
          - action: labelmap
            regex: __meta_kubernetes_pod_label_(.+)
          - action: replace
            source_labels:
            - __meta_kubernetes_namespace
            target_label: kubernetes_namespace
          - action: replace
            source_labels:
            - __meta_kubernetes_pod_name
            target_label: kubernetes_pod_name
        - job_name: 'kubernetes-schedule'
          scrape_interval: 5s
          static_configs:
          - targets: ['192.168.0.6:10251']
        - job_name: 'kubernetes-controller-manager'
          scrape_interval: 5s
          static_configs:
          - targets: ['192.168.0.6:10252']
        - job_name: 'kubernetes-kube-proxy'
          scrape_interval: 5s
          static_configs:
          - targets: ['192.168.0.6:10249','192.168.0.56:10249']
        - job_name: 'kubernetes-etcd'
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
            cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
            key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
          scrape_interval: 5s
          static_configs:
          - targets: ['192.168.0.6:2379']
      rules.yml: |
        groups:
        - name: example
          rules:
          - alert: kube-proxy的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  kube-proxy的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-kube-proxy"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: scheduler的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  scheduler的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-schedule"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: controller-manager的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  controller-manager的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-controller-manager"}[1m]) * 100 > 0
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: apiserver的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  apiserver的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: etcd的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
          - alert:  etcd的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
          - alert: kube-state-metrics的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
              value: "{{ $value }}%"
              threshold: "80%"      
          - alert: kube-state-metrics的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
              value: "{{ $value }}%"
              threshold: "90%"      
          - alert: coredns的cpu使用率大于80%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
              value: "{{ $value }}%"
              threshold: "80%"      
          - alert: coredns的cpu使用率大于90%
            expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
              value: "{{ $value }}%"
              threshold: "90%"      
          - alert: kube-proxy打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kube-proxy打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-schedule打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-schedule"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-schedule打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-controller-manager打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-controller-manager打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-apiserver打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-apiserver打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: kubernetes-etcd打开句柄数>600
            expr: process_open_fds{job=~"kubernetes-etcd"}  > 600
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
              value: "{{ $value }}"
          - alert: kubernetes-etcd打开句柄数>1000
            expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
              value: "{{ $value }}"
          - alert: coredns
            expr: process_open_fds{k8s_app=~"kube-dns"}  > 600
            for: 2s
            labels:
              severity: warnning 
            annotations:
              description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
              value: "{{ $value }}"
          - alert: coredns
            expr: process_open_fds{k8s_app=~"kube-dns"}  > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
              value: "{{ $value }}"
          - alert: kube-proxy
            expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: scheduler
            expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: kubernetes-controller-manager
            expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: kubernetes-apiserver
            expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: kubernetes-etcd
            expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: kube-dns
            expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"
              value: "{{ $value }}"
          - alert: HttpRequestsAvg
            expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"
              value: "{{ $value }}"
              threshold: "1000"   
          - alert: Pod_restarts
            expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
            for: 2s
            labels:
              severity: warnning
            annotations:
              description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Pod_waiting
            expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
            for: 2s
            labels:
              team: admin
            annotations:
              description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"
              value: "{{ $value }}"
              threshold: "1"   
          - alert: Pod_terminated
            expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
            for: 2s
            labels:
              team: admin
            annotations:
              description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"
              value: "{{ $value }}"
              threshold: "1"
          - alert: Etcd_leader
            expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Etcd_leader_changes
            expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Etcd_failed
            expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"
              value: "{{ $value }}"
              threshold: "0"
          - alert: Etcd_db_total_size
            expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
            for: 2s
            labels:
              team: admin
            annotations:
              description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"
              value: "{{ $value }}"
              threshold: "10G"
          - alert: Endpoint_ready
            expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
            for: 2s
            labels:
              team: admin
            annotations:
              description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"
              value: "{{ $value }}"
              threshold: "1"
        - name: 物理节点状态-监控告警
          rules:
          - alert: 物理节点cpu使用率
            expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
            for: 2s
            labels:
              severity: ccritical
            annotations:
              summary: "{{ $labels.instance }}cpu使用率过高"
              description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" 
          - alert: 物理节点内存使用率
            expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{ $labels.instance }}内存使用率过高"
              description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
          - alert: InstanceDown
            expr: up == 0
            for: 2s
            labels:
              severity: critical
            annotations:   
              summary: "{{ $labels.instance }}: 服务器宕机"
              description: "{{ $labels.instance }}: 服务器延时超过2分钟"
          - alert: 物理节点磁盘的IO性能
            expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"
              description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"
          - alert: 入网流量带宽
            expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 流入网络带宽过高!"
              description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
          - alert: 出网流量带宽
            expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 流出网络带宽过高!"
              description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
          - alert: TCP会话
            expr: node_netstat_Tcp_CurrEstab > 1000
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"
              description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"
          - alert: 磁盘容量
            expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
            for: 2s
            labels:
              severity: critical
            annotations:
              summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"
              description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$valu
    

    注意:通过上面命令生成的promtheus-cfg.yaml文件会有一些问题,$1和$2这种变量在文件里没有,需要在k8s的master1节点打开promtheus-cfg.yaml文件,手动把$1和$2这种变量写进文件里,promtheus-cfg.yaml文件需要手动修改部分如下:

    22行的replacement: ':9100'变成replacement: '${1}:9100'
    42行的replacement: /api/v1/nodes//proxy/metrics/cadvisor变成
                  replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
    73行的replacement:  变成replacement: $1:$2
    103行的replacement:  变成replacement: $1:$2
    

    通过kubectl apply 更新文件

    kubectl apply -f prometheus-cfg.yaml 

    在k8s的master1节点重新生成一个prometheus-deploy.yaml文件

    cat >prometheus-deploy.yaml <<EOF
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: prometheus-server
      namespace: monitor-sa
      labels:
        app: prometheus
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: prometheus
          component: server
        #matchExpressions:
        #- {key: app, operator: In, values: [prometheus]}
        #- {key: component, operator: In, values: [server]}
      template:
        metadata:
          labels:
            app: prometheus
            component: server
          annotations:
            prometheus.io/scrape: 'false'
        spec:
          nodeName: node1
          serviceAccountName: monitor
          containers:
          - name: prometheus
            image: prom/prometheus:v2.2.1
            imagePullPolicy: IfNotPresent
            command:
            - "/bin/prometheus"
            args:
            - "--config.file=/etc/prometheus/prometheus.yml"
            - "--storage.tsdb.path=/prometheus"
            - "--storage.tsdb.retention=24h"
            - "--web.enable-lifecycle"
            ports:
            - containerPort: 9090
              protocol: TCP
            volumeMounts:
            - mountPath: /etc/prometheus
              name: prometheus-config
            - mountPath: /prometheus/
              name: prometheus-storage-volume
            - name: k8s-certs
              mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
          - name: alertmanager
            image: prom/alertmanager:v0.14.0
            imagePullPolicy: IfNotPresent
            args:
            - "--config.file=/etc/alertmanager/alertmanager.yml"
            - "--log.level=debug"
            ports:
            - containerPort: 9093
              protocol: TCP
              name: alertmanager
            volumeMounts:
            - name: alertmanager-config
              mountPath: /etc/alertmanager
            - name: alertmanager-storage
              mountPath: /alertmanager
            - name: localtime
              mountPath: /etc/localtime
          volumes:
            - name: prometheus-config
              configMap:
                name: prometheus-config
            - name: prometheus-storage-volume
              hostPath:
               path: /data
               type: Directory
            - name: k8s-certs
              secret:
               secretName: etcd-certs
            - name: alertmanager-config
              configMap:
                name: alertmanager
            - name: alertmanager-storage
              hostPath:
               path: /data/alertmanager
               type: DirectoryOrCreate
            - name: localtime
              hostPath:
               path: /usr/share/zoneinfo/Asia/Shanghai
    EOF
    

    生成一个etcd-certs,这个在部署prometheus需要

    kubectl -n monitor-sa create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key  --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt
    通过kubectl apply更新yaml文件

    kubectl apply -f prometheus-deploy.yaml

    #查看prometheus是否部署成功

    kubectl get pods -n monitor-sa | grep prometheus

    显示如下,可看到pod状态是running,说明prometheus部署成功

    NAME                                 READY   STATUS    RESTARTS   AGE
    prometheus-server-85dbc6c7f7-nsg94   1/1     Running   0          6m7
    

     在k8s的master1节点重新生成一个alertmanager-svc.yaml文件

    cat >alertmanager-svc.yaml <<EOF
    ---
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        name: prometheus
        kubernetes.io/cluster-service: 'true'
      name: alertmanager
      namespace: monitor-sa
    spec:
      ports:
      - name: alertmanager
        nodePort: 30066
        port: 9093
        protocol: TCP
        targetPort: 9093
      selector:
        app: prometheus
      sessionAffinity: None
      type: NodePort
    EOF
    

    通过kubectl apply更新yaml文件

    kubectl apply -f prometheus-svc.yaml

    #查看service在物理机映射的端口

    kubectl get svc -n monitor-sa

    显示如下:

    NAME           TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)          AGE
    alertmanager   NodePort   10.111.49.65   <none>        9093:31043/TCP   25s
    prometheus     NodePort   10.96.45.93    <none>        9090:30090/TCP   34h
    

    注意:上面可以看到prometheus的service暴漏的端口是31043,alertmanager的service暴露的端口是30066

    访问prometheus的web界面

    点击status->targets,可看到如下

     点击Alerts,可看到如下

     把controller-manager的cpu使用率大于90%展开,可看到如下

    FIRING表示prometheus已经将告警发给alertmanager,在Alertmanager 中可以看到有一个 alert。 

    登录到alertmanager web界面

    浏览器输入192.168.0.6:30066,显示如下

     这样我在我的qq邮箱,1980570647@qq.com就可以收到报警了,如下

    配置Alertmanager报警-发送报警到钉钉

    打开电脑版钉钉创建机器人
    1.创建钉钉机器人

    打开电脑版钉钉,创建一个群,创建自定义机器人,按如下步骤创建https://ding-doc.dingtalk.com/doc#/serverapi2/qf2nxq
    我创建的机器人如下:群设置-->智能群助手-->添加机器人-->自定义-->添加
    机器人名称:kube-event接收群组:钉钉报警测试
    安全设置:自定义关键词:cluster1
    上面配置好之后点击完成即可,这样就会创建一个kube-event的报警机器人,创建机器人成功之后怎么查看webhook,按如下:
    点击智能群助手,可以看到刚才创建的kube-event这个机器人,点击kube-event,就会进入到kube-event机器人的设置界面出现如下内容:机器人名称:kube-event接受群组:钉钉报警测试消息推送:开启webhook:https://oapi.dingtalk.com/robot/send?access_token=9c03ff1f47b1d15a10d852398cafb84f8e81ceeb1ba557eddd8a79e5a5e5548e安全设置:自定义关键词:cluster1

    2.安装钉钉的webhook插件,在k8s的master1节点操作
    tar zxvf prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz

    prometheus-webhook-dingtalk-0.3.0.linux-amd64.tar.gz压缩包所在的百度网盘地址如下:

     链接:https://pan.baidu.com/s/1_HtVZsItq2KsYvOlkIP9DQ 提取码:d59o

    cd prometheus-webhook-dingtalk-0.3.0.linux-amd64

    启动钉钉报警插件

    nohup ./prometheus-webhook-dingtalk --web.listen-address="0.0.0.0:8060" --ding.profile="cluster1=https://oapi.dingtalk.com/robot/send?access_token=9c03ff1f47b1d15a10d852398cafb84f8e81ceeb1ba557eddd8a79e5a5e5548e" &
    对原来的文件做备份
    cp alertmanager-cm.yaml alertmanager-cm.yaml.bak

    重新生成一个新的alertmanager-cm.yaml文件

    cat >alertmanager-cm.yaml <<EOF
    kind: ConfigMap
    apiVersion: v1
    metadata:
      name: alertmanager
      namespace: monitor-sa
    data:
      alertmanager.yml: |-
        global:
          resolve_timeout: 1m
          smtp_smarthost: 'smtp.163.com:25'
          smtp_from: '15011572657@163.com'
          smtp_auth_username: '15011572657'
          smtp_auth_password: 'BDBPRMLNZGKWRFJP'
          smtp_require_tls: false
        route:
          group_by: [alertname]
          group_wait: 10s
          group_interval: 10s
          repeat_interval: 10m
          receiver: cluster1
        receivers:
        - name: cluster1
          webhook_configs:
          - url: 'http://192.168.124.16:8060/dingtalk/cluster1/send'
            send_resolved: true
    EOF
    

     通过kubectl apply使配置生效

    kubectl delete -f alertmanager-cm.yaml

    kubectl  apply  -f alertmanager-cm.yaml

    kubectl delete -f prometheus-cfg.yaml

    kubectl apply  -f prometheus-cfg.yaml

    kubectl delete  -f prometheus-deploy.yaml
    kubectl apply  -f  prometheus-deploy.yaml

    通过上面步骤,就可以实现钉钉报警了

  • 相关阅读:
    17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
    17.1.2 Replication Formats
    Setting the Master Configuration on the Slave
    17.1.1.9 Introducing Additional Slaves to an Existing Replication Environment
    17.1.1.8 Setting Up Replication with Existing Data
    17.1.1.7 Setting Up Replication with New Master and Slaves
    17.1.1.6 Creating a Data Snapshot Using Raw Data Files
    列出display的值,并说明它们的作用
    CSS设置DIV居中
    CSS选择符有哪些?哪些属性可以继承?优先级算法如何计算?
  • 原文地址:https://www.cnblogs.com/zjz20/p/12938457.html
Copyright © 2011-2022 走看看