\(x\) 为该位置有 \(1\) 的期望。
统计两个值 :
\(suma\) 和 \(sumb\)。
\(suma\) 表示连续 \(X\) 个 \(1\) , \(X\) 的平方的期望, \(sumb\) 表示 \(X\) 的期望。
因为 \((x + 1)^3 = x^3 + 3x^2 + 3x + 1\)
所以每次把答案加上 \(3suma + 3sumb + 1\) 乘以该位置有 \(x\) 的期望即可。
而 \(suma = x * (suma + 2sumb + 1)\), \(sumb = x * (sumb + 1)\)
递推即可
Code:
#include<bit/stdc++.h>
using namespace std;
int n;
double x, ans, suma, sumb;
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i++)
scanf("%lf", &x),
ans += (sumb * 3 + suma * 3 + 1) * x,
sumb = (sumb + 2 * suma + 1) * x,
suma = (suma + 1) * x;
printf("%.1lf", ans);
return 0;
}