zoukankan      html  css  js  c++  java
  • ECDSA签名算法和BIP32数学原理

    ECDSA签名算法和HDWallet数学原理

    golang对于ecdsa算法的实现

    简述

    椭圆曲线算法,
    就是在椭圆曲线上的一系列的离散的有限的点, 并且定义了一个虚拟的0点(原点), 逆元, 加法和乘法二元运算
    并且这些二元运算满足加法交换律和结合律.

    这些点形成组成了一个有限域, 称为阿贝尔群.

    私钥生成:randFieldElement

    func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
    	params := c.Params()
    	b := make([]byte, params.BitSize/8+8)
    	_, err = io.ReadFull(rand, b)
    	if err != nil {
    		return
    	}
    
    	k = new(big.Int).SetBytes(b)
    	n := new(big.Int).Sub(params.N, one)
    	k.Mod(k, n)
    	k.Add(k, one)
    	return
    }
    

    randFieldElement作用是使用 curve paramater 来生成一个新的私钥k.
    参数ccurve paramater(或者叫 domain parameters)定义了在有限域中的椭圆曲线的阿贝尔群.

    Our elliptic curve algorithms will work in a cyclic subgroup of an elliptic curve over a finite field. Therefore, our algorithms will need the following parameters:

    • The prime p that specifies the size of the finite field.
    • The coefficients a and b of the elliptic curve equation.
    • The base point G that generates our subgroup.
    • The order n of the subgroup.
    • The cofactor h of the subgroup. ($ h = N/n (,其中) N $ 是椭圆曲线的阶数)

    In conclusion, the domain parameters for our algorithms are the sextuple (p,a,b,G,n,h).

    生成签名:signGeneric

    func signGeneric(pk *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
    	N := c.Params().N
    	if N.Sign() == 0 {
    		return nil, nil, errZeroParam
    	}
    	var k, kInv *big.Int
    	for {
    		for {
    			k, err = randFieldElement(c, *csprng)
    			if err != nil {
    				r = nil
    				return
    			}
    			if in, ok := pk.Curve.(invertible); ok {
    				kInv = in.Inverse(k)
    			} else {
    				kInv = fermatInverse(k, N) // N != 0
    			}
    			r, _ = pk.Curve.ScalarBaseMult(k.Bytes())
    			r.Mod(r, N)
    			if r.Sign() != 0 {
    				break
    			}
    		}
    		e := hashToInt(hash, c)
    		s = new(big.Int).Mul(pk.D, r)
    		s.Add(s, e)
    		s.Mul(s, kInv)
    		s.Mod(s, N) // N != 0
    		if s.Sign() != 0 {
    			break
    		}
    	}
    	return
    }
    

    签名函数返回值包含两部分内容, sig = (r, s)

    • k为临时生成的私钥
    • e为签名数据的hash值的整数形式
    • R = k * G, 所以R为临时私钥k的公钥
    • 函数 Inverse, fermatInverse为由doman paramater(secp256k1)定义的椭圆曲线有限域定义的计算逆元的代数实现.
    • 函数 ScalarBaseMult 为有限域上的乘法的代数实现
    • pk 为私钥, P为公钥

    代码中的两层for循环,是因为临时生成的私钥不满足条件(具体原因后面在说),for循环会重新再次随机生成临时私钥对于,99.99%的情况是,这个for循环只会执行一次.
    所以根据代码可以把计算 rs 的代数表达式简单的写成:

    (egin{aligned} r = R.x end{aligned})

    即 r 的几何意义为:临时私钥k的公钥R[ = k * G 为椭圆曲线上的一个点]的x坐标.

    (egin{aligned} s = (e + r * pk) / k end{aligned})

    验证签名:verifyGeneric

    func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
    	e := hashToInt(hash, c)
    	var w *big.Int
    	N := c.Params().N
    	if in, ok := c.(invertible); ok {
    		w = in.Inverse(s)
    	} else {
    		w = new(big.Int).ModInverse(s, N)
    	}
    	u1 := e.Mul(e, w)
    	u1.Mod(u1, N)
    	u2 := w.Mul(r, w)
    	u2.Mod(u2, N)
    	// Check if implements S1*g + S2*p
    	var x, y *big.Int
    	if opt, ok := c.(combinedMult); ok {
    		x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
    	} else {
    		x1, y1 := c.ScalarBaseMult(u1.Bytes())
    		x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
    		x, y = c.Add(x1, y1, x2, y2)
    	}
    	if x.Sign() == 0 && y.Sign() == 0 {
    		return false
    	}
    	x.Mod(x, N)
    	return x.Cmp(r) == 0
    }
    
    • 函数ScalarBaseMult是椭圆曲线有限域上n * G的乘法, 其中n为参数
    • 函数ScalarMult 是椭圆曲线有限域上定义的n * P的乘法, 第1,2个参数表示P的x和y坐标, 第3个参数为n.

    根据函数的实现可以写出验证代数表达式, 并执行推导出如下结果:

    (egin{aligned} e*G/s + r*Pub/s &= e*G/s + r*Pk*G/s \ &= (e+r*Pk)*G/s \ &= ((e + r * Pk) * G) / ((e + r * Pk) / k) \ &= k * G \ &= R end{aligned})

    • e为签名数据hash值的整数形式

    • G为Domain parameters的中定义的椭圆曲线的生成点

    • k 为在signGeneric函数中生成的临时私钥

    • 传入的参数r, 为k的公钥的x坐标

    • R(代数表达式最后推出的结果), 就是k的公钥

    函数verifyGeneric最后x.Cmp(r)==0就是比较上面的代数表达式推算出的的R.x(k的公钥的x坐标)和signGeneric(签名函数)返回的r(临时私钥的公钥的x坐标)是否相等来判断签名是否验证成功的.

    分层确定钱包Hierarchical Deterministic Wallet

    分层确定钱包的详细描述及相关细节在<<master bitcoin-HD Wallets (BIP-32/BIP-44)>><<BIP32>>中已经有非常详细的说明.

    这里不再重复这些内容, 其中, 分层确定确定钱包有一个非常重要的特性:

    A very useful characteristic of HD wallets is the ability to derive public child keys from public parent keys, without having the private keys.
    HD wallets 一个非常有用的特性是:不需要知道父私钥,就能够通过父公钥派生出子公钥.

    这个特性是分层确定钱包最奇妙的地方, 这一章节就是来讲清楚HD wallet这个特性背后的数学原理.

    首先定义代表某些计算的符号如下:

    • point(p): returns the coordinate pair resulting from EC point multiplication (repeated application of the EC group operation) of the secp256k1 base point with the integer p.
    • ser32(i): serialize a 32-bit unsigned integer i as a 4-byte sequence, most significant byte first.
    • ser256(p): serializes the integer p as a 32-byte sequence, most significant byte first.
    • serP(P): serializes the coordinate pair P = (x,y) as a byte sequence using SEC1's compressed form: (0x02 or 0x03) || ser256(x), where the header byte depends on the parity of the omitted y coordinate.
    • parse256(p): interprets a 32-byte sequence as a 256-bit number, most significant byte first.

    父扩展私钥派生子扩展私钥

    The function CKDpriv((kpar, cpar), i) → (ki, ci) computes a child extended private key from the parent extended private key:

    • Check whether i ≥ 231 (whether the child is a hardened key).
      • If so (hardened child): let I = HMAC-SHA512(Key = cpar, Data = 0x00 || ser256(kpar) || ser32(i)). (Note: The 0x00 pads the private key to make it 33 bytes long.)
      • If not (normal child): let I = HMAC-SHA512(Key = cpar, Data = serP(point(kpar)) || ser32(i)).
    • Split I into two 32-byte sequences, IL and IR.
    • The returned child key ki is parse256(IL) + kpar (mod n).
    • The returned chain code ci is IR.
    • In case parse256(IL) ≥ n or ki = 0, the resulting key is invalid, and one should proceed with the next value for i. (Note: this has probability lower than 1 in 2127.)

    函数CKDpriv为派生子私钥的函数, 参数和返回值解释为:Kpar(父私钥),Cpar(父链码),Ki子私钥, Ci(子链码)

    其中point(kpar) = kpar * G = 父公钥, 记为k_pubpar

    为了突出重点, 这里把上面的计算过程精简一为下面的过程:

    1. HMAC-SHA512(Key = cpar, Data = serP(point(kpar)) 得到64个字节的数组
    2. 64个字节前32位作为子链码
    3. 后32位作为临时私钥kephemeral
    4. kephemeral + kpar 作为子私钥记为:kchild
    5. 根据子私钥可以通过( kchild * G)计算出子公钥记为k_pubchild

    父扩展公钥派生子扩展公钥

    The function CKDpub((Kpar, cpar), i) → (Ki, ci) computes a child extended public key from the parent extended public key. It is only defined for non-hardened child keys.

    • Check whether i ≥ 231 (whether the child is a hardened key).
      ** If so (hardened child): return failure
      ** If not (normal child): let I = HMAC-SHA512(Key = cpar, Data = serP(Kpar) || ser32(i)).
    • Split I into two 32-byte sequences, IL and IR.
    • The returned child key Ki is point(parse256(IL)) + Kpar.
    • The returned chain code ci is IR.
    • In case parse256(IL) ≥ n or Ki is the point at infinity, the resulting key is invalid, and one should proceed with the next value for i.

    同样, 为了突出重点, 把上面描述的过程精简为下面的过程:

    1. HMAC-SHA512(Key = cpar, Data = serP(point(kpar)) 得到64个字节的数组
    2. 64个字节的前32个字节作为子链码
    3. 后32位作为临时私钥kephemeral
    4. 然后计算kephemeral * G = k_pubephemeral 为临时公钥
    5. 然后计算 k_pubephemeral + k_pubpar 作为子公钥 = k_pubchild

    又由于椭圆曲线上的点是一个阿贝尔群, 满足加法交换律和结合律, 可以有下面的推导过程:

    (egin{aligned} k\_pub_{ephemeral} + k\_pub_{par} &= k_{ephemeral} * G + k_{par} * G \ &= (k_{ephemeral} + k_{par}) * G \ &= k_{child} * G \ &= k\_pub_{child} \ end{aligned})

    这就是为什么HD Wallet只需要暴露扩展公钥就能推测出子私钥地址的原因.

    分层确定钱包的风险

    分层确定钱包的风险请参考这篇文章:Private Key Recovery Combination Attacks

    参考引用

    Elliptic Curve Cryptography: a gentle introduction
    ecdsa math
    What is modular arithmetic
    模运算
    椭圆曲线加密算法
    ECC椭圆曲线详解
    bitcoin extendedkey 源码

  • 相关阅读:
    各种颜色对应的16进制
    django之旅 1.hello world
    FlexPaper文档在线浏览
    windwos下django 安装配置
    Josn 序列化
    WCF服务
    easy_install遇上Unable to find vcvarsall.bat
    Android开发环境搭建(jdk+eclip+android sdk)
    安卓系统架构图(转)
    windows8和windows server2012不联网安装.net 3.5(包括2.0和3.0)
  • 原文地址:https://www.cnblogs.com/zl03jsj/p/14845363.html
Copyright © 2011-2022 走看看