zoukankan      html  css  js  c++  java
  • [python机器学习]机器学习简单示例-KNN、决策树、线性回归、逻辑回归

    1.KNN

    查找距离已知的几个点最近的类型,并返回这个类型进行预测。

    如小明在北京,小红在北京,小刚在河南,而我距离小明和小红比小刚近,则我最可能在北京而不是河南

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @File  : KNN近邻算法.py
    # @Author: 赵路仓
    # @Date  : 2020/4/2
    # @Desc  : 学习网站:https://www.bilibili.com/video/BV1nt411r7tj?p=21
    # @Contact : 398333404@qq.com
    
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split, GridSearchCV
    from sklearn.preprocessing import StandardScaler
    from sklearn.neighbors import KNeighborsClassifier
    import numpy as np
    
    
    def knn_iris():
        """
        用KNN算法对鸢尾花进行分类
        :return:
        """
        # 1.获取数据
        iris = load_iris()
        print(iris)
    
        # 2.划分数据集
        x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)
    
        # 3.特征工程:标准化
        transfer = StandardScaler()
        x_train = transfer.fit_transform(x_train)
        x_test = transfer.transform(x_test)
    
        # 4.KNN算法预估器
        estimator = KNeighborsClassifier(n_neighbors=6)
        estimator.fit(x_train, y_train)
    
        # 5.模型评估
        # 方法一:直接对比真实数据和预测值
        y_predit = estimator.predict(x_test)
        print("y_predit:
    ", y_predit)
        print("对比真实值和预测值:
    ", y_test == y_predit)
    
        # 方法2:计算准确率
        score = estimator.score(x_test, y_test)
        print("准确率为:
    ", score)
    
        # 预测新的鸾尾花品种
        x_new = np.array([[5, 2.9, 1, 0.2]])
        prediction = estimator.predict(x_new)
        print(prediction)
        return None
    
    
    def knn_iris_gscv():
        """
        用KNN算法对鸢尾花进行分类,添加网格搜索与交叉验证
        :return:
        """
        # 1.获取数据
        iris = load_iris()
        print(iris)
    
        # 2.划分数据集
        x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)
    
        # 3.特征工程:标准化
        transfer = StandardScaler()
        x_train = transfer.fit_transform(x_train)
        x_test = transfer.transform(x_test)
    
        # 4.KNN算法预估器
        estimator = KNeighborsClassifier(n_neighbors=5)
        # 加入网格搜索与交叉验证
        # 参数准备 从下侧中取n_neighbors
        param_dict = {
            "n_neighbors": [1, 3, 5, 7, 9, 11]
        }
        estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10)
        estimator.fit(x_train, y_train)
    
        # 5.模型评估
        # 方法一:直接对比真实数据和预测值
        y_predit = estimator.predict(x_test)
        print("y_predit:
    ", y_predit)
        print("对比真实值和预测值:
    ", y_test == y_predit)
    
        # 方法2:计算准确率
        score = estimator.score(x_test, y_test)
        print("准确率为:
    ", score)
    
        """
           最佳参数:best_params_
           最佳结果:best_score_
           最佳估计器:best_estimator_
           交叉验证结果:cv_results_
           """
        print("最佳参数:
    ", estimator.best_params_)
        print("最佳结果:
    ", estimator.best_score_)
        print("最佳估计器:
    ", estimator.best_estimator_)
        print("交叉验证结果:
    ", estimator.cv_results_)
    
        # 预测新的鸾尾花品种
        x_new = np.array([[5, 2.9, 1, 0.2]])
        prediction = estimator.predict(x_new)
        print(prediction)
        return None
    
    
    if __name__ == "__main__":
        # 代码1:KNN对鸾尾花分类
        # knn_iris()
        # 代码2:KNN预测鸾尾花分类并添加网格搜索和交叉验证
        knn_iris_gscv()
    View Code

    2.决策树

    分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @File  : 决策树.py
    # @Author: 赵路仓
    # @Date  : 2020/4/3
    # @Desc  : https://www.bilibili.com/video/BV1nt411r7tj?p=28
    # @Contact : 398333404@qq.com
    import os
    
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier, export_graphviz
    import graphviz
    
    
    def decision_iris():
        """
        用决策树对鸢尾花数据进行分类
        :return:
        """
        # 1.获取数据集
        iris = load_iris()
        print(iris.data[1])
        print(iris.target[1])
    
        # 2.划分数据集
        x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
        print(y_train)
    
        # 3.决策树预估器
        estimator = DecisionTreeClassifier(criterion="entropy")
        estimator.fit(x_train, y_train)
    
        # 4.模型评估
        # 方法一:直接对比真实数据和预测值
        y_predit = estimator.predict(x_test)
        print("y_predit:
    ", y_predit)
        print("对比真实值和预测值:
    ", y_test == y_predit)
    
        # 方法2:计算准确率
        score = estimator.score(x_test, y_test)
        print("准确率为:
    ", score)
    
        # 可视化决策树
        # 生成文件
        dot_data = export_graphviz(estimator, out_file=None)
        graph = graphviz.Source(dot_data)
        graph.render("tree")  # tree3是我想要命名的pdf名称
        return None
    
    
    if __name__ == "__main__":
        decision_iris()
    View Code

    3.线性回归

    线性回归的任务是找到一个从特征空间X到输出空间Y的最优的线性映射函数

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @File  : 波士顿房价预测.py
    # @Author: 赵路仓
    # @Date  : 2020/4/11
    # @Desc  :
    # @Contact : 398333404@qq.com 
    
    from sklearn.datasets import load_boston
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge
    from sklearn.metrics import mean_squared_error
    
    
    # 正规方程
    def linear1():
        """
        正规方程的优化方法对波士顿房价进行预测
        :return:
        """
        # 1.获取数据
        boston = load_boston()
    
        # 2.划分数据集
        x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    
        # 3.标准化
        transfer = StandardScaler()
        x_train = transfer.fit_transform(x_train)
        x_test = transfer.transform(x_test)
    
        # 4.预估器 正规方程优化 小于十万条
        estimator = LinearRegression()
        estimator.fit(x_train, y_train)
    
        # 5.得出模型
        print("正规方程权重系数为:", estimator.coef_)
        print("正规方程偏置:", estimator.intercept_)
    
        # 6.模型评估
        y_predit = estimator.predict(x_test)
        print("预测房价:", y_predit)
        error = mean_squared_error(y_test, y_predit)
        print("正规方程-均方误差:", error)
    
        return None
    
    
    # 梯度下降
    def linear2():
        """
        梯度下降的优化方法对波士顿房价进行预测
        :return:
        """
        # 1.获取数据
        boston = load_boston()
    
        # 2.划分数据集
        x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    
        # 3.标准化
        transfer = StandardScaler()
        x_train = transfer.fit_transform(x_train)
        x_test = transfer.transform(x_test)
    
        # 4.预估器 梯度下降,eta0学习率,max_iter迭代次数,大量数据推荐使用
        estimator = SGDRegressor(learning_rate="constant", eta0=0.001, max_iter=10000)
        estimator.fit(x_train, y_train)
    
        # 5.得出模型
        print("梯度下降权重系数为:", estimator.coef_)
        print("梯度下降偏置:", estimator.intercept_)
    
        # 6.模型评估
        y_predit = estimator.predict(x_test)
        print("预测房价:", y_predit)
        error = mean_squared_error(y_test, y_predit)
        print("梯度下降-均方误差:", error)
        return None
    
    
    # 岭回归
    def linear3():
        """
        岭回归对波士顿房价进行预测
        :return:
        """
        # 1.获取数据
        boston = load_boston()
    
        # 2.划分数据集
        x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    
        # 3.标准化
        transfer = StandardScaler()
        x_train = transfer.fit_transform(x_train)
        x_test = transfer.transform(x_test)
    
        # 4.预估器 梯度下降,eta0学习率,max_iter迭代次数,大量数据推荐使用
        estimator = Ridge(max_iter=10000)
        estimator.fit(x_train, y_train)
    
        # 5.得出模型
        print("岭回归权重系数为:", estimator.coef_)
        print("岭回归偏置:", estimator.intercept_)
    
        # 6.模型评估
        y_predit = estimator.predict(x_test)
        print("预测房价:", y_predit)
        error = mean_squared_error(y_test, y_predit)
        print("岭回归-均方误差:", error)
        return None
    
    
    if __name__ == "__main__":
        # 代码1:正规方程
        linear1()
        # 代码2:梯度下降
        linear2()
        # 代码3:岭回归
        linear3()
    View Code

    4.逻辑回归

    简单来说, 逻辑回归(Logistic Regression)是一种用于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。 

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # @File  : 癌症逻辑回归.py
    # @Author: 赵路仓
    # @Date  : 2020/4/11
    # @Desc  :
    # @Contact : 398333404@qq.com 
    
    from sklearn.datasets import load_breast_cancer
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import classification_report, roc_auc_score
    import pandas as pd
    import numpy as np
    
    
    def cancer_demo():
        """
        利用逻辑回归对乳腺癌进行二分类
        :return:
        """
        # 载入数据
        cancer = load_breast_cancer()
        # print(cancer.feature_names)
        # print(cancer.data)
        # print(cancer.target)
    
        # 划分数据集
        x_train, x_test, y_train, y_test = train_test_split(cancer.data, cancer.target)
    
        # 标准化
        transfer = StandardScaler()
        x_train = transfer.fit_transform(x_train)
        x_test = transfer.transform(x_test)
        print(x_train)
    
        # 构建预估器
        estimator = LogisticRegression()
        estimator.fit(x_train, y_train)
    
        # 得出模型
        print("逻辑回归权重系数:", estimator.coef_)
        print("逻辑回归偏置:", estimator.intercept_)
    
        # 模型评估
        # 方法一:直接对比真实数据和预测值
        y_predit = estimator.predict(x_test)
        print("y_predit:
    ", y_predit)
        print("对比真实值和预测值:
    ", y_test == y_predit)
    
        # 方法2:计算准确率
        score = estimator.score(x_test, y_test)
        print("准确率为:
    ", score)
    
        # 查看精确率 召回率 以及F1-score
        report = classification_report(y_test, y_predit, labels=[0, 1], target_names=['良性', '恶性'])
        print(report)
        roc=roc_auc_score(y_test,y_predit)
        print("ROC曲线:",roc)
    
    
    if __name__ == "__main__":
        cancer_demo()
    View Code
  • 相关阅读:
    nexus docker 私有镜像处理
    nexus 使用Raw Repositories 进行maven site 发布
    nexus && minio s3 存储私有镜像
    spring boot 使用spring.resources.static-locations 分离系统模版&&资源文件
    Tencent Server Web 安装试用
    docker could not find an available, non-overlapping IPv4 address pool among the defaults to assign to the network
    Tencent Server Web(TSW) 腾讯开源的nodejs 基础设施
    Stream Processing 101: From SQL to Streaming SQL in 10 Minutes
    13 Stream Processing Patterns for building Streaming and Realtime Applications
    Siddhi cep java 集成简单使用
  • 原文地址:https://www.cnblogs.com/zlc364624/p/12874078.html
Copyright © 2011-2022 走看看