zoukankan      html  css  js  c++  java
  • DoubleDQN---tensorflow实现

    完整代码:https://github.com/zle1992/Reinforcement_Learning_Game

    开山之作: 《Playing Atari with Deep Reinforcement Learning》(NIPS)

    http://export.arxiv.org/pdf/1312.5602

    《Human-level control through deep reinforcementlearnin》 https://www.cs.swarthmore.edu/~meeden/cs63/s15/nature15b.pdf

    使用2个网络,减少了相关性,每隔一定时间,替换参数。

    《Deep Reinforcement Learning with Double Q-learning》  https://arxiv.org/pdf/1509.06461.pdf

      1 import os
      2 import numpy as np 
      3 import tensorflow as tf
      4 from abc import ABCMeta, abstractmethod
      5 np.random.seed(1)
      6 tf.set_random_seed(1)
      7 
      8 import logging  # 引入logging模块
      9 logging.basicConfig(level=logging.DEBUG,
     10                     format='%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s')  # logging.basicConfig函数对日志的输出格式及方式做相关配置
     11 # 由于日志基本配置中级别设置为DEBUG,所以一下打印信息将会全部显示在控制台上
     12 
     13 tfconfig = tf.ConfigProto()
     14 tfconfig.gpu_options.allow_growth = True
     15 session = tf.Session(config=tfconfig)
     16 
     17 
     18 class DoubleDQNet(object):
     19     __metaclass__ = ABCMeta
     20     """docstring for DeepQNetwork"""
     21     def __init__(self, 
     22             n_actions,
     23             n_features,
     24             learning_rate,
     25             reward_decay,
     26             replace_target_iter,
     27             memory_size,
     28             e_greedy,
     29             e_greedy_increment,
     30             e_greedy_max,
     31             output_graph,
     32             log_dir,
     33             use_doubleQ ,
     34             model_dir,
     35             ):
     36         super(DoubleDQNet, self).__init__()
     37         
     38         self.n_actions = n_actions
     39         self.n_features = n_features
     40         self.learning_rate=learning_rate
     41         self.gamma=reward_decay
     42         self.replace_target_iter=replace_target_iter
     43         self.memory_size=memory_size
     44         self.epsilon=e_greedy
     45         self.epsilon_max=e_greedy_max
     46         self.epsilon_increment=e_greedy_increment
     47         self.output_graph=output_graph
     48         self.lr =learning_rate
     49         
     50         self.log_dir = log_dir
     51         self.use_doubleQ =use_doubleQ
     52         self.model_dir = model_dir 
     53         # total learning step
     54         self.learn_step_counter = 0
     55 
     56 
     57         self.s = tf.placeholder(tf.float32,[None]+self.n_features,name='s')
     58         self.s_next = tf.placeholder(tf.float32,[None]+self.n_features,name='s_next')
     59 
     60 
     61 
     62 
     63 
     64         self.r = tf.placeholder(tf.float32,[None,],name='r')
     65         self.a = tf.placeholder(tf.int32,[None,],name='a')
     66 
     67 
     68         self.q_eval = self._build_q_net(self.s, scope='eval_net', trainable=True)
     69         self.q_next = self._build_q_net(self.s_next, scope='target_net', trainable=False)
     70         #self.q_eval4next  = tf.stop_gradient(self._build_q_net(self.s_next, scope='eval_net4next', trainable=True))
     71         self.q_eval4next  = self._build_q_net(self.s_next, scope='eval_net4next', trainable=False)
     72         
     73 
     74 
     75 
     76         
     77    
     78 
     79         if self.use_doubleQ:
     80 
     81            
     82             value_i = tf.to_int32(tf.argmax(self.q_eval4next,axis=1))
     83             range_i = tf.range(tf.shape(self.a)[0], dtype=tf.int32)
     84             index_a = tf.stack([range_i, value_i], axis=1)
     85 
     86 
     87             maxq =  tf.gather_nd(params=self.q_next,indices=index_a)
     88        
     89         else:
     90             maxq =  tf.reduce_max(self.q_next, axis=1, name='Qmax_s_')    # shape=(None, )
     91 
     92 
     93         with tf.variable_scope('q_target'):
     94             #只更新最大的那一列
     95             self.q_target = self.r + self.gamma * maxq
     96         with tf.variable_scope('q_eval'):
     97             a_indices = tf.stack([tf.range(tf.shape(self.a)[0], dtype=tf.int32), self.a], axis=1)
     98             self.q_eval_wrt_a = tf.gather_nd(params=self.q_eval, indices=a_indices)    # shape=(None, )
     99         with tf.variable_scope('loss'):
    100             self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval_wrt_a, name='TD_error'))
    101         with tf.variable_scope('train'):
    102             self._train_op = tf.train.AdamOptimizer(self.lr).minimize(self.loss)
    103 
    104 
    105 
    106         t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_net')
    107         e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='eval_net')
    108         en_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='eval_net4next')
    109 
    110         with tf.variable_scope("hard_replacement"):
    111             self.target_replace_op=[tf.assign(t,e) for t,e in zip(t_params,e_params)]
    112 
    113         with tf.variable_scope("hard_replacement2"):
    114             self.target_replace_op2=[tf.assign(t,e) for t,e in zip(en_params,e_params)]
    115        
    116         self.sess = tf.Session()
    117         if self.output_graph:
    118             tf.summary.FileWriter(self.log_dir,self.sess.graph)
    119 
    120         self.sess.run(tf.global_variables_initializer())
    121         
    122         self.cost_his =[0]
    123         self.cost = 0
    124 
    125         self.saver = tf.train.Saver()
    126 
    127         if not os.path.exists(self.model_dir):
    128             os.mkdir(self.model_dir)
    129 
    130         checkpoint = tf.train.get_checkpoint_state(self.model_dir)
    131         if checkpoint and checkpoint.model_checkpoint_path:
    132             self.saver.restore(self.sess, checkpoint.model_checkpoint_path)
    133             print ("Loading Successfully")
    134             self.learn_step_counter = int(checkpoint.model_checkpoint_path.split('-')[-1]) + 1
    135     @abstractmethod
    136     def _build_q_net(self,x,scope,trainable):
    137         raise NotImplementedError
    138 
    139     def learn(self,data):
    140 
    141         self.sess.run(self.target_replace_op2)
    142          # check to replace target parameters
    143         if self.learn_step_counter % self.replace_target_iter == 0:
    144             self.sess.run(self.target_replace_op)
    145             print('
    target_params_replaced
    ')
    146 
    147         batch_memory_s = data['s']
    148         batch_memory_a =  data['a']
    149         batch_memory_r = data['r']
    150         batch_memory_s_ = data['s_']
    151       
    152     
    153         
    154         _, cost = self.sess.run(
    155             [self._train_op, self.loss],
    156             feed_dict={
    157                 self.s: batch_memory_s,
    158                 self.a: batch_memory_a,
    159                 self.r: batch_memory_r,
    160                 self.s_next: batch_memory_s_,
    161             
    162             })
    163         #self.cost_his.append(cost)
    164         self.cost = cost
    165         # increasing epsilon
    166         if self.epsilon < self.epsilon_max:
    167             self.epsilon += self.epsilon_increment 
    168         else:
    169             self.epsilon = self.epsilon_max
    170 
    171 
    172 
    173         self.learn_step_counter += 1
    174             # save network every 100000 iteration
    175         if self.learn_step_counter % 10000 == 0:
    176             self.saver.save(self.sess,self.model_dir,global_step=self.learn_step_counter)
    177 
    178 
    179 
    180     def choose_action(self,s): 
    181         s = s[np.newaxis,:]
    182         aa = np.random.uniform()
    183         #print("epsilon_max",self.epsilon_max)
    184         if aa < self.epsilon:
    185             action_value = self.sess.run(self.q_eval,feed_dict={self.s:s})
    186             action = np.argmax(action_value)
    187         else:
    188             action = np.random.randint(0,self.n_actions)
    189         return action

    参考:

    https://github.com/simoninithomas/Deep_reinforcement_learning_Course

    https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow/blob/master/modules/dqn.py

  • 相关阅读:
    dotNet程序保护方案
    网络数据包捕获函数库Libpcap安装与使用(非常强大)
    Objectivec 中 nil, Nil, NULL和NSNull的区别
    对象的相等和恒等
    IOS SDK介绍
    iOS内存管理编程指南
    http权威指南读书笔记(三)——http报文
    http权威指南学习笔记(二)
    http权威指南读书笔记(一)
    CentOS 设置环境变量
  • 原文地址:https://www.cnblogs.com/zle1992/p/10287200.html
Copyright © 2011-2022 走看看