zoukankan      html  css  js  c++  java
  • 213. House Robber II(动态规划)

    You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

    Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

    Example 1:

    Input: [2,3,2]
    Output: 3
    Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2),
                 because they are adjacent houses.
    

    Example 2:

    Input: [1,2,3,1]
    Output: 4
    Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
                 Total amount you can rob = 1 + 3 = 4.

     这个地方的所有房屋都排成一个圆圈。这意味着第一栋房屋是最后一栋房屋的邻居。

    思路:首尾算邻居,所以我们分别去掉头,分别去掉尾,然后利用第一问的程序,得到最大偷盗金额。取max.

     1 class Solution {
     2 public:
     3     int rob(vector<int>& nums) {
     4         int n = nums.size();
     5         if(n==0) return 0;
     6         if(n==1) return nums[0];
     7         vector<int> nums1(nums.begin(),nums.end()-1);
     8         vector<int> nums2(nums.begin()+1,nums.end());
     9         int m1 = rob1(nums1);    
    10         int m2 = rob1(nums2);
    11         return std::max(m1,m2);
    12     }
    13      int rob1(vector<int>& nums) {
    14         int n = nums.size();
    15         if(n==0) return 0;
    16         if(n==1) return nums[0];
    17         if(n==2) return std::max(nums[0],nums[1]);
    18         vector<int> dp(n,0);
    19         dp[0] = nums[0];
    20         dp[1] = std::max(nums[0],nums[1]);
    21         for(int i = 2;i<n;i++)
    22             dp[i] = std::max(dp[i-1],dp[i-2]+nums[i]);
    23         return dp[n-1];
    24     }
    25 };
     1 class Solution {
     2 public:
     3     int rob(vector<int>& nums) {
     4         int n = nums.size();
     5         if(n==0) return 0;
     6         if(n==1) return nums[0];
     7         int temp = nums[n-1];
     8         nums.pop_back();
     9         int m1 = rob1(nums);
    10         
    11         nums.push_back(temp);
    12         nums.erase(nums.begin());
    13         
    14         int m2 = rob1(nums);
    15         return std::max(m1,m2);
    16     }
    17      int rob1(vector<int>& nums) {
    18         int n = nums.size();
    19         if(n==0) return 0;
    20         if(n==1) return nums[0];
    21         if(n==2) return std::max(nums[0],nums[1]);
    22         vector<int> dp(n,0);
    23         dp[0] = nums[0];
    24         dp[1] = std::max(nums[0],nums[1]);
    25         for(int i = 2;i<n;i++)
    26             dp[i] = std::max(dp[i-1],dp[i-2]+nums[i]);
    27         return dp[n-1];
    28     }
    29 };
  • 相关阅读:
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    Java最常用的工具类库
    运筹学那些事,专科学生学习运筹学之网络计划技术,No.6
    这么设计实时数据平台,OLAP再也不是个事儿
    从这 5 个场景 , 看 MPC 多方安全计算的行业应用
    前后端通信进行AES加密(Vue
    圣诞快乐: 用 GaussDB T 绘制一颗圣诞树,兼论高斯数据库语法兼容
    安全多方计算新突破:阿里首次实现“公开可验证”的安全方案
    矩阵元安全多方详细介绍
    MySQL InnoDB引擎如何保证事务特性
  • 原文地址:https://www.cnblogs.com/zle1992/p/10418839.html
Copyright © 2011-2022 走看看