zoukankan      html  css  js  c++  java
  • 213. House Robber II(动态规划)

    You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

    Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

    Example 1:

    Input: [2,3,2]
    Output: 3
    Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2),
                 because they are adjacent houses.
    

    Example 2:

    Input: [1,2,3,1]
    Output: 4
    Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
                 Total amount you can rob = 1 + 3 = 4.

     这个地方的所有房屋都排成一个圆圈。这意味着第一栋房屋是最后一栋房屋的邻居。

    思路:首尾算邻居,所以我们分别去掉头,分别去掉尾,然后利用第一问的程序,得到最大偷盗金额。取max.

     1 class Solution {
     2 public:
     3     int rob(vector<int>& nums) {
     4         int n = nums.size();
     5         if(n==0) return 0;
     6         if(n==1) return nums[0];
     7         vector<int> nums1(nums.begin(),nums.end()-1);
     8         vector<int> nums2(nums.begin()+1,nums.end());
     9         int m1 = rob1(nums1);    
    10         int m2 = rob1(nums2);
    11         return std::max(m1,m2);
    12     }
    13      int rob1(vector<int>& nums) {
    14         int n = nums.size();
    15         if(n==0) return 0;
    16         if(n==1) return nums[0];
    17         if(n==2) return std::max(nums[0],nums[1]);
    18         vector<int> dp(n,0);
    19         dp[0] = nums[0];
    20         dp[1] = std::max(nums[0],nums[1]);
    21         for(int i = 2;i<n;i++)
    22             dp[i] = std::max(dp[i-1],dp[i-2]+nums[i]);
    23         return dp[n-1];
    24     }
    25 };
     1 class Solution {
     2 public:
     3     int rob(vector<int>& nums) {
     4         int n = nums.size();
     5         if(n==0) return 0;
     6         if(n==1) return nums[0];
     7         int temp = nums[n-1];
     8         nums.pop_back();
     9         int m1 = rob1(nums);
    10         
    11         nums.push_back(temp);
    12         nums.erase(nums.begin());
    13         
    14         int m2 = rob1(nums);
    15         return std::max(m1,m2);
    16     }
    17      int rob1(vector<int>& nums) {
    18         int n = nums.size();
    19         if(n==0) return 0;
    20         if(n==1) return nums[0];
    21         if(n==2) return std::max(nums[0],nums[1]);
    22         vector<int> dp(n,0);
    23         dp[0] = nums[0];
    24         dp[1] = std::max(nums[0],nums[1]);
    25         for(int i = 2;i<n;i++)
    26             dp[i] = std::max(dp[i-1],dp[i-2]+nums[i]);
    27         return dp[n-1];
    28     }
    29 };
  • 相关阅读:
    循环队列
    UVa10000_Longest Paths(最短路SPFA)
    最新jhost免费jsp云空间会员邀请码
    Vertica: 基于DBMS架构的列存储数据仓库
    java中接口的定义与实现
    【C++知识汇总】运营商 &amp; 运算符重载
    SVN与eclipse整合和利用、SVN与Apache综合
    Java单链逆转
    hdu1115(重力算法的多边形中心)
    高效C++规划
  • 原文地址:https://www.cnblogs.com/zle1992/p/10418839.html
Copyright © 2011-2022 走看看