zoukankan      html  css  js  c++  java
  • 213. House Robber II(动态规划)

    You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

    Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

    Example 1:

    Input: [2,3,2]
    Output: 3
    Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2),
                 because they are adjacent houses.
    

    Example 2:

    Input: [1,2,3,1]
    Output: 4
    Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
                 Total amount you can rob = 1 + 3 = 4.

     这个地方的所有房屋都排成一个圆圈。这意味着第一栋房屋是最后一栋房屋的邻居。

    思路:首尾算邻居,所以我们分别去掉头,分别去掉尾,然后利用第一问的程序,得到最大偷盗金额。取max.

     1 class Solution {
     2 public:
     3     int rob(vector<int>& nums) {
     4         int n = nums.size();
     5         if(n==0) return 0;
     6         if(n==1) return nums[0];
     7         vector<int> nums1(nums.begin(),nums.end()-1);
     8         vector<int> nums2(nums.begin()+1,nums.end());
     9         int m1 = rob1(nums1);    
    10         int m2 = rob1(nums2);
    11         return std::max(m1,m2);
    12     }
    13      int rob1(vector<int>& nums) {
    14         int n = nums.size();
    15         if(n==0) return 0;
    16         if(n==1) return nums[0];
    17         if(n==2) return std::max(nums[0],nums[1]);
    18         vector<int> dp(n,0);
    19         dp[0] = nums[0];
    20         dp[1] = std::max(nums[0],nums[1]);
    21         for(int i = 2;i<n;i++)
    22             dp[i] = std::max(dp[i-1],dp[i-2]+nums[i]);
    23         return dp[n-1];
    24     }
    25 };
     1 class Solution {
     2 public:
     3     int rob(vector<int>& nums) {
     4         int n = nums.size();
     5         if(n==0) return 0;
     6         if(n==1) return nums[0];
     7         int temp = nums[n-1];
     8         nums.pop_back();
     9         int m1 = rob1(nums);
    10         
    11         nums.push_back(temp);
    12         nums.erase(nums.begin());
    13         
    14         int m2 = rob1(nums);
    15         return std::max(m1,m2);
    16     }
    17      int rob1(vector<int>& nums) {
    18         int n = nums.size();
    19         if(n==0) return 0;
    20         if(n==1) return nums[0];
    21         if(n==2) return std::max(nums[0],nums[1]);
    22         vector<int> dp(n,0);
    23         dp[0] = nums[0];
    24         dp[1] = std::max(nums[0],nums[1]);
    25         for(int i = 2;i<n;i++)
    26             dp[i] = std::max(dp[i-1],dp[i-2]+nums[i]);
    27         return dp[n-1];
    28     }
    29 };
  • 相关阅读:
    iOS应用崩溃日志分析
    使用Crashlytics来保存应用崩溃信息
    Mac和iOS开发资源汇总
    简单配置PonyDebugger
    程序员的工作不能用“生产效率”这个词来衡量
    使用Reveal 调试iOS应用程序
    MySQL 笔记
    flex弹性布局
    回调函数
    微信小程序开发
  • 原文地址:https://www.cnblogs.com/zle1992/p/10418839.html
Copyright © 2011-2022 走看看