一、shell 查询
hbase 查询相当简单,提供了get和scan两种方式,也不存在多表联合查询的问题。复杂查询需通过hive创建相应外部表,用sql语句自动生成mapreduce进行。
但是这种简单,有时为了达到目的,也不是那么顺手。至少和sql查询方式相差较大。
hbase 提供了很多过滤器,可对行键,列,值进行过滤。过滤方式可以是子串,二进制,前缀,正则比较等。条件可以是AND,OR等 组合。所以通过过滤,还是能满足需求,找到正确的结果的。
1.1 过滤器类型
HBase 最新官方文档中文版(http://abloz.com/hbase/book.html)中有对过滤器的描述。过滤器分为5种类型:
- 构造型过滤器:用于包含其他一组过滤器的过滤器。包括:FilterList
- 列值型过滤器:对每列的值进行过滤的. 相当于sql查询中的=和like 包括:
SingleColumnValueFilter
比较器,包括: RegexStringComparator 支持值比较的正则表达式 SubstringComparator 用于检测一个子串是否存在于值中。大小写不敏感。 BinaryPrefixComparator 二进制前缀比较 BinaryComparator 二进制比较
- 键值元数据过滤器:用于对列进行过滤的。包括:
FamilyFilter 用于过滤列族。 通常,在Scan中选择ColumnFamilie优于在过滤器中做。 QualifierFilter 用于基于列名(即 Qualifier)过滤. ColumnPrefixFilter 可基于列名(即Qualifier)前缀过滤。 MultipleColumnPrefixFilter 和 ColumnPrefixFilter 行为差不多,但可以指定多个前缀。 ColumnRangeFilter 可以进行高效内部扫描。
- Rowkey:对行键进行过滤。通常认为行选择时Scan采用 startRow/stopRow 方法比较好。然而 RowFilter 也可以用。
- 工具:如FirstKeyOnlyFilter用于统计行数。
二、示例
1.FirstKeyOnlyFilter,一种方便的计算行数的过滤器
hbase(main):002:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>'info',FILTER=>"(FirstKeyOnlyFilter())"} 0000000001 column=info:loginid, timestamp=1343625459713, value=jjm168131013 0000000002 column=info:loginid, timestamp=1343625459713, value=loveswh ... 21 row(s) in 0.5480 seconds
2.列名子串进行过滤
hbase(main):006:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:'],FILTER=>"(QualifierFilter(=,'substring:id'))"} ROW COLUMN+CELL 0000000001 column=info:loginid, timestamp=1343625459713, value=jjm168131013 0000000001 column=info:userid, timestamp=1343625459713, value=168131013 0000000002 column=info:loginid, timestamp=1343625459713, value=loveswh 0000000002 column=info:userid, timestamp=1343625459713, value=100898152 hbase(main):005:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:loginid'],FILTER=>"(QualifierFilter(=,'substring:id'))"} ROW COLUMN+CELL 0000000001 column=info:loginid, timestamp=1343625459713, value=jjm168131013 0000000002 column=info:loginid, timestamp=1343625459713, value=loveswh hbase(main):007:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:'],FILTER=>"(QualifierFilter(=,'substring:nid'))"} ROW COLUMN+CELL 0000000001 column=info:loginid, timestamp=1343625459713, value=jjm168131013 0000000002 column=info:loginid, timestamp=1343625459713, value=loveswh hbase(main):008:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:'],FILTER=>"(QualifierFilter(=,'substring:nick'))"} ROW COLUMN+CELL 0000000001 column=info:nick, timestamp=1343625459713, value=xE5xAExB6xE6x9Cx89xE8x99x8ExE5xAEx9 D 0000000002 column=info:nick, timestamp=1343625459713, value=loveswh08
3.Value 过滤
3.1 正则过滤 hbase(main):004:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>'info',FILTER=>"(SingleColumnValueFilter('info','nick',=,'regexstring:.*99',true,true))"} ROW COLUMN+CELL 0000000009 column=info:loginid, timestamp=1343625459713, value=zgh1968 0000000009 column=info:nick, timestamp=1343625459713, value=zwy99 0000000009 column=info:score, timestamp=1343625459713, value=5 0000000009 column=info:userid, timestamp=1343625459713, value=100366262 1 row(s) in 0.2520 seconds 3.2 子串 需导入 import org.apache.hadoop.hbase.filter.CompareFilter import org.apache.hadoop.hbase.filter.SingleColumnValueFilter import org.apache.hadoop.hbase.filter.SubstringComparator import org.apache.hadoop.hbase.util.Bytes hbase(main):028:0> scan 'toplist_ware_ios_1001_201231',{COLUMNS =>'info:nick', FILTER=>SingleColumnValueFilter.new(Bytes.toBytes('info'),Bytes.toBytes('nick'),CompareFilter::CompareOp.valueOf('EQUAL'),SubstringComparator.new('8888'))} ROW COLUMN+CELL 0000000002 column=info:nick, timestamp=1343625446556, value=xE7x81x8F????xE3x81x8A??8888 1 row(s) in 0.0330 seconds 3.3 二进制 子串等不支持多字节文字,所以用二进制来进行比较 hbase(main):010:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:'],FILTER=>"(QualifierFilter(=,'substring:nick') AND ValueFilter(=,'binary:7789xE6xB4x81') )"} ROW COLUMN+CELL 0000000016 column=info:nick, timestamp=1343625459713, value=7789xE6xB4x81 1 row(s) in 0.1710 seconds
4 综合列名子串和值二进制比较
hbase(main):012:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>['info:'],FILTER=>"(QualifierFilter(=,'substring:nick') AND ValueFilter(=,'binary:7789xE6xB4x81') )"} ROW COLUMN+CELL 0000000016 column=info:nick, timestamp=1343625459713, value=7789xE6xB4x81 1 row(s) in 0.0120 seconds
hbase(main):014:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>"info:",FILTER=>"(PrefixFilter('000000002')) AND (QualifierFilter(=,'substring:nick')"} ROW COLUMN+CELL 0000000020 column=info:nick, timestamp=1343625459713, value=Denny_feng 0000000021 column=info:nick, timestamp=1343625459713, value=xE5xB0x8FxE7xBDx97xE6x95x99xE7xBBx8 31 2 row(s) in 0.0440 seconds
5. 行查询
hbase(main):005:0> get 'toplist_ware_ios_1009_201231','0000000009' COLUMN CELL info:loginid timestamp=1343625459713, value=zgh1968 info:nick timestamp=1343625459713, value=zwy99 info:score timestamp=1343625459713, value=5 info:userid timestamp=1343625459713, value=100366262 4 row(s) in 0.1000 seconds
hbase(main):006:0> get 'toplist_ware_ios_1009_201231','0000000009','info:nick' COLUMN CELL info:nick timestamp=1343625459713, value=zwy99 1 row(s) in 0.0100 seconds
hbase(main):009:0> scan 'toplist_ware_ios_1009_201231',FILTER=>"PrefixFilter('000000002')" ROW COLUMN+CELL 0000000020 column=info:loginid, timestamp=1343625459713, value=jjm169212318 0000000020 column=info:nick, timestamp=1343625459713, value=Denny_feng 0000000020 column=info:score, timestamp=1343625459713, value=1 0000000020 column=info:userid, timestamp=1343625459713, value=169212318 0000000021 column=info:loginid, timestamp=1343625459713, value=jjm169371841 0000000021 column=info:nick, timestamp=1343625459713, value=xE5xB0x8FxE7xBDx97xE6x95x99xE7xBBx8 31 0000000021 column=info:score, timestamp=1343625459713, value=1 0000000021 column=info:userid, timestamp=1343625459713, value=169371841 2 row(s) in 0.0180 seconds
hbase(main):010:0> scan 'toplist_ware_ios_1009_201231',FILTER=>"PrefixFilter('000000002')",LIMIT=>1 ROW COLUMN+CELL 0000000020 column=info:loginid, timestamp=1343625459713, value=jjm169212318 0000000020 column=info:nick, timestamp=1343625459713, value=Denny_feng 0000000020 column=info:score, timestamp=1343625459713, value=1 0000000020 column=info:userid, timestamp=1343625459713, value=169212318 1 row(s) in 0.0170 seconds
hbase(main):011:0> scan 'toplist_ware_ios_1009_201231',{COLUMNS=>"info:nick",FILTER=>"PrefixFilter('000000002')",LIMIT=>1} ROW COLUMN+CELL 0000000020 column=info:nick, timestamp=1343625459713, value=Denny_feng 1 row(s) in 0.0160 seconds