zoukankan      html  css  js  c++  java
  • 15 手写数字识别-小数据集

    1.手写数字数据集

    • from sklearn.datasets import load_digits
    • digits = load_digits()
    from sklearn.datasets import load_digits
    import numpy as np
    digits = load_digits()

    2.图片数据预处理

    • x:归一化MinMaxScaler()
    • y:独热编码OneHotEncoder()或to_categorical
    • 训练集测试集划分
    • 张量结构
    # SKlearn 数据预处理:归一化
    from sklearn.preprocessing import MinMaxScaler
    X_data = digits.data.astype(np.float32)
    scaler = MinMaxScaler()
    X_data = scaler.fit_transform(X_data)
    print("归一化后",X_data)
    # 转化为图片的格式(batch,height,width,channels)
    X=X_data.reshape(-1,8,8,1)
    # OneHotEncoder独热编码
    from sklearn.preprocessing import OneHotEncoder
    # y = digits.target.reshape(-1,1)
    y = digits.target.astype(np.float32).reshape(-1,1)  #将Y_data变为一列
    Y = OneHotEncoder().fit_transform(y).todense() #张量结构todense
    print("独热编码:",Y)
    # 切分数据集
    from sklearn.model_selection import train_test_split
    X_train,X_test,y_train,y_test = train_test_split(X,Y,test_size=0.2,random_state=0,stratify=Y)
    print(X_train,X_test,y_train,y_test)
    print("X_data.shape:",X_data.shape)
    print("X.shape",X.shape)

    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense,Dropout,Conv2D,MaxPool2D,Flatten
    #3、建立模型
    model = Sequential()
    ks = (3, 3)  # 卷积核的大小
    input_shape = X_train.shape[1:]
    # 一层卷积,padding='same',tensorflow会对输入自动补0
    model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))
    # 池化层1
    model.add(MaxPool2D(pool_size=(2, 2)))
    # 防止过拟合,随机丢掉连接
    model.add(Dropout(0.25))
    # 二层卷积
    model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))
    # 池化层2
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # 三层卷积
    model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))
    # 四层卷积
    model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))
    # 池化层3
    model.add(MaxPool2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    # 平坦层
    model.add(Flatten())
    # 全连接层
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.25))
    # 激活函数softmax
    model.add(Dense(10, activation='softmax'))
    print(model.summary())

     3.模型训练

    # 3、模型训练
    # 画Train History图
    plt.rcParams['font.sans-serif'] = ['FangSong'] # 指定字体
    def show_train_history(train_history, train, validation):
        plt.plot(train_history.history[train])
        plt.plot(train_history.history[validation])
        plt.ylabel('train')
        plt.xlabel('epoch')
        plt.legend(['train', 'validation'], loc='upper left')
        plt.show()
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    train_history = model.fit(x=x_train,y=y_train,validation_split=0.2,batch_size=300,epochs=10,verbose=2)
    show_train_history(train_history,"accuracy","val_accuracy")  # 准确率
    show_train_history(train_history,"loss","val_loss")  # 损失率
    
    
    

    5.模型评价

    • model.evaluate()
    • 交叉表与交叉矩阵
    • pandas.crosstab
    • seaborn.heatmap
    复制代码
    # 5、模型评价
    import pandas as pd
    import seaborn as sns
    # model.evaluate()
    score = model.evaluate(X_test, y_test)
    print('score:', score)
    # 预测值
    y_pred = model.predict_classes(X_test)
    print('y_pred:', y_pred[:10])
    # 交叉表与交叉矩阵
    y_test1 = np.argmax(y_test, axis=1).reshape(-1)
    y_true = np.array(y_test1)[0]
    # 交叉表查看预测数据与原数据对比
    # pandas.crosstab
    pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])
    # 交叉矩阵
    # seaborn.heatmap
    y_test1 = y_test1.tolist()[0]
    a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict'])
    # 转换成属dataframe
    df = pd.DataFrame(a)
    sns.heatmap(df, annot=True, cmap="Reds", linewidths=0.2, linecolor='G')
    plt.show()
     
     
    
    
    
    
    
    
     

  • 相关阅读:
    /etc/sysctl.conf 控制内核相关配置文件
    python 并发编程 非阻塞IO模型
    python 并发编程 多路复用IO模型
    python 并发编程 异步IO模型
    python 并发编程 阻塞IO模型
    python 并发编程 基于gevent模块 协程池 实现并发的套接字通信
    python 并发编程 基于gevent模块实现并发的套接字通信
    python 并发编程 io模型 目录
    python 并发编程 socket 服务端 客户端 阻塞io行为
    python 并发编程 IO模型介绍
  • 原文地址:https://www.cnblogs.com/zlkang/p/13085598.html
Copyright © 2011-2022 走看看