zoukankan      html  css  js  c++  java
  • 1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分)
     

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

    Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

    Output Specification:

    For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either EulerianSemi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

    Sample Input 1:

    7 12
    5 7
    1 2
    1 3
    2 3
    2 4
    3 4
    5 2
    7 6
    6 3
    4 5
    6 4
    5 6
    

    Sample Output 1:

    2 4 4 4 4 4 2
    Eulerian
    

    Sample Input 2:

    6 10
    1 2
    1 3
    2 3
    2 4
    3 4
    5 2
    6 3
    4 5
    6 4
    5 6
    

    Sample Output 2:

    2 4 4 4 3 3
    Semi-Eulerian
    

    Sample Input 3:

    5 8
    1 2
    2 5
    5 4
    4 1
    1 3
    3 2
    3 4
    5 3
    

    Sample Output 3:

    3 3 4 3 3
    Non-Eulerian


    应该算是很简单的一道题了,
    判断欧拉回路

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 int n,m;
     4 vector<int> v[550];
     5 int val[550], vis[550], cnt = 0;
     6 void dfs(int x){
     7     vis[x] = 1;
     8     cnt++;
     9     for(int i = 0; i < v[x].size(); i++){
    10         if(vis[v[x][i]]) continue;
    11         dfs(v[x][i]);
    12     }
    13 }
    14 int main(){
    15     cin >> n >> m;
    16     int x,y;
    17     for(int i = 0; i < m; i++){
    18         cin >> x >> y;
    19         v[x].push_back(y);
    20         v[y].push_back(x);
    21         val[x]++;
    22         val[y]++;
    23     }
    24     int odd = 0;
    25     for(int i = 1; i <= n; i++){
    26         if(val[i]&1) odd++;
    27         printf("%d%c", val[i], i == n?'
    ':' ');
    28     }
    29     dfs(1);
    30     if(cnt == n){
    31         if(odd == 2){
    32             puts("Semi-Eulerian");
    33         }else if(odd == 0){
    34             puts("Eulerian");
    35         }else{
    36             puts("Non-Eulerian");
    37         }
    38     }else{
    39         puts("Non-Eulerian");
    40     }
    41     return 0;
    42 }



  • 相关阅读:
    Spring
    sikuli常用方法学习
    运行测试Caused by: java.lang.UnsatisfiedLinkError: no attach in java.library.path错误解决
    sikuli+java实例
    sikuli运行出现问题:Win32Util.dll: Can't load 32-bit .dll on a AMD 64 bit platform
    官网下载jdk
    java:jdk环境变量配置+tomcat环境变量配置
    Redis能干啥?细看11种Web应用场景
    计数场景的优化
    国内外三个领域巨头告诉你Redis怎么用
  • 原文地址:https://www.cnblogs.com/zllwxm123/p/11324187.html
Copyright © 2011-2022 走看看