The Cartesian coordinate system is set in the sky. There you can see n stars, the i-th has coordinates (xi, yi), a maximum brightness c, equal for all stars, and an initial brightness si (0 ≤ si ≤ c).
Over time the stars twinkle. At moment 0 the i-th star has brightness si. Let at moment t some star has brightness x. Then at moment (t + 1) this star will have brightness x + 1, if x + 1 ≤ c, and 0, otherwise.
You want to look at the sky q times. In the i-th time you will look at the moment ti and you will see a rectangle with sides parallel to the coordinate axes, the lower left corner has coordinates (x1i, y1i) and the upper right — (x2i, y2i). For each view, you want to know the total brightness of the stars lying in the viewed rectangle.
A star lies in a rectangle if it lies on its border or lies strictly inside it.
The first line contains three integers n, q, c (1 ≤ n, q ≤ 105, 1 ≤ c ≤ 10) — the number of the stars, the number of the views and the maximum brightness of the stars.
The next n lines contain the stars description. The i-th from these lines contains three integers xi, yi, si (1 ≤ xi, yi ≤ 100, 0 ≤ si ≤ c ≤ 10) — the coordinates of i-th star and its initial brightness.
The next q lines contain the views description. The i-th from these lines contains five integers ti, x1i, y1i, x2i, y2i (0 ≤ ti ≤ 109, 1 ≤ x1i < x2i ≤ 100, 1 ≤ y1i < y2i ≤ 100) — the moment of the i-th view and the coordinates of the viewed rectangle.
For each view print the total brightness of the viewed stars.
2 3 3
1 1 1
3 2 0
2 1 1 2 2
0 2 1 4 5
5 1 1 5 5
3
0
3
3 4 5
1 1 2
2 3 0
3 3 1
0 1 1 100 100
1 2 2 4 4
2 2 1 4 7
1 50 50 51 51
3
3
5
0
Let's consider the first example.
At the first view, you can see only the first star. At moment 2 its brightness is 3, so the answer is 3.
At the second view, you can see only the second star. At moment 0 its brightness is 0, so the answer is 0.
At the third view, you can see both stars. At moment 5 brightness of the first is 2, and brightness of the second is 1, so the answer is 3.
【题意】
有一片100*100的星空,上面有n颗星星,每个星星有一个亮度,且在0~C范围内周期性变化,现在给出q个查询,每个查询给出时间和一个矩形,求在该时间时矩形内星星的亮度和。
一开始看起来很难,就没怎么想,然后看懂了题意,就容易多了,dp就可以了。
tree[i][j][k] = tree[i][j][k] + tree[i - 1][j][k] + tree[i][j - 1][k] - tree[i - 1][j - 1][k];
表示在坐标为(i,j)星星亮度为k的个数。
查询直接ans=tree[xx][yy][t] + tree[x - 1][y - 1][t] - tree[x - 1][yy][t] - tree[xx][y - 1][t];
当然还要考虑经过的时间t.
1 #include <bits/stdc++.h> 2 #define N 105 3 using namespace std; 4 int tree[N][N][12]; 5 int n, q, c; 6 7 void dp() { 8 for (int i = 1; i <= 100; i++) { 9 for (int j = 1; j <= 100; j++) { 10 for (int k = 0; k <= c; k++) { 11 tree[i][j][k] = tree[i][j][k] + tree[i - 1][j][k] + tree[i][j - 1][k] - tree[i - 1][j - 1][k]; 12 } 13 } 14 } 15 } 16 17 int add(int t, int x, int y, int xx, int yy) { 18 return tree[xx][yy][t] + tree[x - 1][y - 1][t] - tree[x - 1][yy][t] - tree[xx][y - 1][t]; 19 } 20 21 int main() { 22 23 while (scanf("%d%d%d", &n, &q, &c)!=EOF) { 24 memset(tree, 0, sizeof(tree)); 25 for (int i = 0; i < n; i++) { 26 int x, y, z; 27 scanf("%d%d%d", &x, &y, &z); 28 tree[x][y][z]++; 29 } 30 dp(); 31 for (int i = 0; i < q; i++) { 32 int t, x, y, xx, yy; 33 scanf("%d%d%d%d%d", &t, &x, &y, &xx, &yy); 34 int ans = 0; 35 for (int j = 0; j <= c; j++) { 36 int s = (t + j) % (c + 1); 37 ans += s * add(j, x, y, xx, yy); 38 } 39 printf("%d ", ans); 40 } 41 } 42 43 return 0; 44 }