zoukankan      html  css  js  c++  java
  • 很多很多书上代码

    在学习二叉树的过程中按照书上打出来的代码 记下来要经常看看 希望我和我的树玩得开心 :-)

    ①二叉搜索树的插入删除搜索输出

    #include <bits/stdc++.h>
    using namespace std;
    
    struct Node {
        int key;
        Node *left, *right, *parent;
    };
    
    Node *root, *NIL;
    
    void Insert(int k) {
        Node *y = NIL;
        Node *x = root;
        Node *z;
    
        z = (Node *) malloc(sizeof(Node));
        z -> key = k;
        z -> left = NIL;
        z -> right = NIL;
    
        while(x != NIL) {
            y = x;
            if(z -> key < x -> key)
                x = x -> left;
            else x = x -> right;
        }
    
        z -> parent = y;
        if(y == NIL)
            root = z;
        else {
            if(z -> key < y -> key)
                y -> left = z;
            else y -> right = z;
        }
    }
    
    void inorder(Node *u) {
        if(u == NIL) return;
        inorder(u -> left);
        printf(" %d", u -> key);
        inorder(u -> right);
    }
    
    void preorder(Node *u) {
        if(u == NIL) return;
        printf(" %d", u -> key);
        preorder(u -> left);
        preorder(u -> right);
    }
    
    Node *Find(Node *u, int k) {
        while(u != NIL && k != u -> key) {
            if(k < u -> key) u = u -> left;
            else u = u -> right;
        }
        return u;
    }
    
    Node *treeMinimum(Node *x) {
        while(x -> left != NIL) x = x -> left;
        return x;
    }
    
    Node *treeSuccessor(Node *x) {
        if(x -> right != NIL) return treeMinimum(x -> right);
        Node *y = x -> parent;
        while(y != NIL && x == y -> right) {
            x = y;
            y = y -> parent;
        }
        return y;
    }
    
    void treeDelete(Node *z) {
        Node *y;
        Node *x;
    
        if(z -> left == NIL || z -> right == NIL) y = z;
        else y = treeSuccessor(z);
    
        if(y -> left != NIL)
            x = y -> left;
        else x = y -> right;
    
        if(x != NIL)
            x -> parent = y -> parent;
    
        if(y -> parent == NIL) root = x;
        else {
            if(y == y -> parent -> left)
                y -> parent -> left = x;
            else y -> parent -> right = x;
        }
    
        if(y != z)
            z -> key = y -> key;
    
        free(y);
    }
    
    int main() {
        int n, i, x;
        string com;
        scanf("%d", &n);
        for(int i = 0; i < n; i ++) {
            cin >> com;
            if(com == "insert") {
                scanf("%d", &x);
                Insert(x);
            } else if(com == "print") {
                inorder(root);
                printf("
    ");
                preorder(root);
                printf("
    ");
            } else if(com == "delete") {
                scanf("%d", &x);
                treeDelete(Find(root, x));
            } else {
                scanf("%d", &x);
                Node *t = Find(root, x);
                if(t != NIL) printf("yes
    ");
                else printf("no
    ");
            }
    
        }
        return 0;
    }
    View Code

    ②输出二叉树深度高度以及父节点和兄弟节点 + 前中后遍历

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    #define MAX 10000
    #define NIL -1
    
    struct Node{
        int parent;
        int left;
        int right;
    };
    
    Node T[MAX];
    int n, D[MAX], H[MAX];
    
    
    void setDepth(int u, int d) {
        if(u == NIL) return ;
        D[u] = d;
        setDepth(T[u].left, d + 1);
        setDepth(T[u].right, d + 1);
    }
    
    int setHeight(int u) {
        int h1 = 0, h2 = 0;
        if(T[u].left != NIL)
            h1 = setHeight(T[u].left) + 1;
        if(T[u].right != NIL)
            h2 = setHeight(T[u].right) + 1;
        return H[u] = max(h1, h2);
    }
    
    int getSibling(int u) {
        if(T[u].parent == NIL) return NIL;
        if(T[T[u].parent].left != u && T[T[u].parent].left != NIL)
            return T[T[u].parent].left;
        if(T[T[u].parent].right != u && T[T[u].parent].right != NIL)
            return T[T[u].parent].right;
    
        return NIL;
    }
    
    void print(int u) {
        printf("node %d: ", u);
        printf("parent = %d, ", T[u].parent);
        printf("sibling = %d, ", getSibling(u));
    
        int deg = 0;
        if(T[u].left != NIL) deg ++;
        if(T[u].right != NIL) deg ++;
        printf("degree = %d, ", deg);
        printf("depth = %d, ", D[u]);
        printf("height = %d, ", H[u]);
    
        if(T[u].parent == NIL)
            printf("root
    ");
        else if(T[u].left == NIL && T[u].right == NIL)
            printf("leaf
    ");
        else printf("internal node
    ");
    }
    
    void prePares(int u) {
        if(u == NIL) return ;
        printf(" %d", u);
        prePares(T[u].left);
        prePares(T[u].right);
    }
    
    void inParse(int u) {
        if(u == NIL) return ;
        inParse(T[u].left);
        printf(" %d", u);
        inParse(T[u].right);
    }
    
    void postParse(int u) {
        if(u == NIL) return ;
        postParse(T[u].left);
        postParse(T[u].right);
        printf(" %d", u);
    }
    
    /*int main() {
        int root = 0;
        scanf("%d", &n);
    
        for(int i = 0; i < n; i ++) T[i].parent = NIL;
        for(int i = 0; i < n; i ++) {
            int v, l, r;
            scanf("%d%d%d", &v, &l, &r);
            T[v].left = l;
            T[v].right = r;
            if(l != NIL) T[l].parent = v;
            if(r != NIL) T[r].parent = v;
        }
    
        for(int i = 0; i < n; i ++)
            if(T[i].parent == NIL) root = i;
    
        setDepth(root, 0);
        setDepth(root, 0);
    
        setHeight(root);
        for(int i = 0; i < n; i ++)
            print(i);
    
        return 0;
    }*/
    
    int main() {
        int i, v, l, r, root;
        scanf("%d", &n);
        for(int i = 0; i < n; i ++)
            T[i].parent = NIL;
    
        for(int i = 0; i < n; i ++) {
            scanf("%d%d%d", &v, &l, &r);
            T[v].left = l;
            T[v].right = r;
            if(l != NIL) T[l].parent = v;
            if(r != NIL) T[r].parent = v;
        }
    
        for(int i = 0; i < n; i ++)
            if(T[i].parent == NIL) root = i;
    
        printf("Preoeder
    ");
        prePares(root);
        printf("
    ");
        printf("Inorder
    ");
        inParse(root);
        printf("
    ");
        printf("Postorder
    ");
        postParse(root);
        printf("
    ");
        return 0;
    }
    View Code

    ③已知前序中序求后序遍历

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    int n, pos;
    vector<int> pre, in, post;
    
    void rec(int l, int r) {
        if(l >= r) return;
        int root = pre[pos ++];
        int m = distance(in.begin(), find(in.begin(), in.end(), root));
        rec(l, m);
        rec(m + 1, r);
        post.push_back(root);
    }
    
    void solve() {
        pos = 0;
        rec(0, n);
        for(int i = 0; i < n; i ++) {
            if(i) printf(" ");
            printf("%d", post[i]);
        }
        printf("
    ");
    }
    
    int main() {
        scanf("%d", &n);
        for(int i = 0; i < n; i ++) {
            int k;
            scanf("%d", &k);
            pre.push_back(k);
        }
        for(int i = 0; i < n; i ++) {
            int k;
            scanf("%d", &k);
            in.push_back(k);
        }
        solve();
        return 0;
    }
    View Code

    ④已知后序中序求前序遍历

    #include <bits/stdc++.h>
    using namespace std;
    
    int N;
    int pos;
    vector<int> in, post, pre;
    
    void rec(int root, int st, int en) {
        if(st > en) return;
        int i = st;
        while(i < en && in[i] != post[root]) i ++;
        printf("%d ", post[root]);
        rec(root - en - 1 + i, st, i - 1);
        rec(root - 1, i + 1, en);
    }
    
    int main() {
        scanf("%d", &N);
        in.resize(N), post.resize(N), pre.resize(N);
        for(int i = 0; i < N; i ++)
            scanf("%d", &in[i]);
        for(int i = 0; i < N; i ++)
            scanf("%d", &post[i]);
    
        rec(N - 1, 0, N - 1);
        return 0;
    }
    View Code

    ⑤生成最大堆

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    const int maxn = 1e5 + 10;
    int H, A[maxn];
    
    void maxHeapify(int x) {
        int l, r, largest;
        l = x * 2;
        r = x * 2 + 1;
    
        if(l <= H && A[l] > A[x]) largest = l;
        else largest = x;
        if(r <= H && A[r] > A[largest]) largest = r;
    
        if(largest != x) {
            swap(A[x], A[largest]);
            maxHeapify(largest);
        }
    }
    
    int main() {
        scanf("%d", &H);
        for(int i = 1; i <= H; i ++)
            scanf("%d", &A[i]);
    
        for(int i = H / 2; i >= 1; i --)
            maxHeapify(i);
    
        for(int i = 1; i <= H; i ++)
            printf("%d ", A[i]);
        return 0;
    }
    View Code

    ⑥ 手写优先队列

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    const int maxn = 1e5 + 10;
    #define INFTY (1 << 30)
    
    int H, A[maxn];
    
    void maxHeapify(int i) {
        int largest, l, r;
        l = i * 2;f
        r = i * 2 + 1;
    
        if(l <= H && A[l] > A[i])
            largest = l;
        else largest = i;
        if(r <= H && A[r] > A[largest])
            largest = r;
    
        if(largest != i) {
            swap(A[largest], A[i]);
            maxHeapify(largest);
        }
    }
    
    int extract() {
        int maxv;
        if(H < 1) return -INFTY;
        maxv = A[1];
        A[1] = A[H --];
        maxHeapify(1);
        return maxv;
    }
    
    void increaseKey(int i, int key) {
        if(key < A[i]) return ;
        A[i] = key;
        while(i > 1 && A[i / 2] < A[i]) {
            swap(A[i], A[i / 2]);
            i /= 2;
        }
    }
    
    void Insert(int key) {
        H ++;
        A[H] = -INFTY;
        increaseKey(H, key);
    }
    
    int main() {
        int key;
        char com[10];
        while(1) {
            scanf("%s", com);
            if(com[0] == 'e' && com[1] == 'n') break;
            if(com[0] == 'i') {
                scanf("%d", &key);
                Insert(key);
            } else {
                printf("%d
    ", extract());
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    DOM--3 DOM核心和DOM2 HTML(3)
    js-其他
    DOM--3 DOM核心和DOM2 HTML(2)
    DOM--3 DOM核心和DOM2 HTML(1)
    插入视频(youtube)
    DOM--2 创建可重用的对象
    safari的坑
    DOM--1 遵循最佳实践
    mvc-5视图和模版
    mvc-4控制器和状态(2)
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/10096551.html
Copyright © 2011-2022 走看看