zoukankan      html  css  js  c++  java
  • PAT 甲级 1126 Eulerian Path

    https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

    Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

    Output Specification:

    For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either EulerianSemi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

    Sample Input 1:

    7 12
    5 7
    1 2
    1 3
    2 3
    2 4
    3 4
    5 2
    7 6
    6 3
    4 5
    6 4
    5 6
    

    Sample Output 1:

    2 4 4 4 4 4 2
    Eulerian
    

    Sample Input 2:

    6 10
    1 2
    1 3
    2 3
    2 4
    3 4
    5 2
    6 3
    4 5
    6 4
    5 6
    

    Sample Output 2:

    2 4 4 4 3 3
    Semi-Eulerian
    

    Sample Input 3:

    5 8
    1 2
    2 5
    5 4
    4 1
    1 3
    3 2
    3 4
    5 3
    

    Sample Output 3:

    3 3 4 3 3
    Non-Eulerian
    
     

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    const int maxn = 1e5 + 10;
    int N, M;
    vector<int> v[maxn];
    int vis[maxn];
    int step = 0;
    
    void dfs(int st) {
        vis[st] = 1;
        step ++;
        for(int i = 0; i < v[st].size(); i ++) {
            if(vis[v[st][i]] == 0)
                dfs(v[st][i]);
        }
    }
    
    int main() {
        scanf("%d%d", &N, &M);
        memset(vis, 0, sizeof(vis));
        while(M --) {
            int a, b;
            scanf("%d%d", &a, &b);
            v[a].push_back(b);
            v[b].push_back(a);
        }
    
        int cnt = 0;
        for(int i = 1; i <= N; i ++) {
            printf("%d", v[i].size());
            printf("%s", i != N ? " " : "
    ");
            if(v[i].size() % 2 == 0) cnt ++;
        }
    
        dfs(1);
        if(step != N) printf("Non-Eulerian
    ");
        else {
            if(cnt == N) printf("Eulerian
    ");
            else if(cnt == N - 2) printf("Semi-Eulerian
    ");
            else printf("Non-Eulerian
    ");
        }
        return 0;
    }  

    题目意思是判断每个点的度 都是偶数的话输出 Eulerian 只有两个点的度是奇数其余都是偶数的话输出 Semi-Eulerian 否则输出 Non-Eulerian 要注意 dfs 判断是不是一个连通图

    新年快乐 不好的事情就留在上一年吧 今年一定要有不一样 

  • 相关阅读:
    聊天系统Demo,增加文件传送功能(附源码)-- ESFramework 4.0 快速上手(14)
    文件传送,如此简单--ESFramework 4.0 快速上手(13)
    PAT B1012.数字分类
    PAT B1046.猜拳
    PAT B1016.部分A+B(15)
    记录:挑战搭建一个简易的成绩管理系统的数据库
    mysql学习记录(一)
    使用foreach一次性添加多个单选按钮
    通过metaclass实现精简的ORM框架
    高级BASH
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/10352615.html
Copyright © 2011-2022 走看看