zoukankan      html  css  js  c++  java
  • POJ 3264 Balanced Lineup

    http://poj.org/problem?id=3264

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    代码1(RMQ)

    #include <iostream>
    #include <stdio.h>
    #include <math.h>
    #include <algorithm>
    #include <cstdio>
    using namespace std;
    
    const int maxn = 5e4 + 10;
    int N, M;
    int a[maxn];
    int maxx[maxn][30], minn[maxn][30];
    
    void RMQ(int num) {
        for(int i = 1; i <= N; i ++) {
            maxx[i][0] = a[i];
            minn[i][0] = a[i];
        }
    
        for(int j = 1; j < 23; j ++) {
            for(int i = 1; i <= num; i ++) {
                if(i + (1 << j) - 1<= num) {
                    maxx[i][j] = max(maxx[i][j - 1], maxx[i + (1 << (j - 1))][j - 1]);
                    minn[i][j] = min(minn[i][j - 1], minn[i + (1 << (j - 1))][j - 1]);
                }
            }
        }
    }
    
    int query(int l, int r) {
        int k = (int)(log(r - l + 1) / log(2.0));
        int maxnum = max(maxx[l][k], maxx[r - (1 << k) + 1][k]);
        int minnum = min(minn[l][k], minn[r - (1 << k) + 1][k]);
        return maxnum - minnum;
    }
    
    int main() {
        scanf("%d%d", &N, &M);
        for(int i = 1; i <= N; i ++)
            scanf("%d", &a[i]);
    
        RMQ(N);
    
        while(M --) {
            int st, en;
            scanf("%d%d", &st, &en);
            int ans = query(st, en);
            printf("%d
    ", ans);
        }
        return 0;
    }
    View Code

    代码2(线段树)

    #include <iostream>
    #include <stdio.h>
    #include <cstdio>
    #include <algorithm>
    #include <string>
    using namespace std;
    
    const int inf = 1e8 + 10;
    const int maxn = 1e6 + 10;
    int N, M;
    int Min, Max;
    int a[maxn];
    
    struct Node{
        int l;
        int r;
        int maxx;
        int minn;
    }node[maxn];
    
    void Build(int i, int l, int r) {
        node[i].l = l;
        node[i].r = r;
        if(l == r) {
            node[i].maxx = node[i].minn = a[l];
            return ;
        }
        int mid = (l + r) / 2;
        Build(i * 2, l, mid);
        Build(i * 2 + 1, mid + 1, r);
        node[i].maxx = max(node[i * 2].maxx, node[i * 2 + 1].maxx);
        node[i].minn = min(node[i * 2].minn, node[i * 2 + 1].minn);
    }
    
    void query(int i, int l, int r) {
        if(node[i].maxx <= Max && node[i].minn >= Min) return;
        if(node[i].l == l && node[i].r == r) {
            Max = max(Max, node[i].maxx);
            Min = min(Min, node[i].minn);
            return ;
        }
        int mid = (node[i].l + node[i].r) / 2;
        if(r <= mid) query(i * 2, l, r);
        else if(l > mid) query(i * 2 + 1, l, r);
        else {
            query(i * 2, l, mid);
            query(i * 2 + 1, mid + 1, r);
        }
    }
    
    int main() {
        while(~scanf("%d%d", &N, &M)) {
            for(int i = 1; i <= N; i ++)
                scanf("%d", &a[i]);
            Build(1, 1, N);
            while(M --) {
                int st, en;
                scanf("%d%d", &st, &en);
                Min = inf, Max = -inf;
                query(1, st, en);
                printf("%d
    ", Max - Min);
            }
        }
        return 0;
    }
    View Code

      线段树求区间最大值和最小值的差 会建线段树了 有 1.. 开心 突然想起来今天的 Leetcode 还没写 

     

  • 相关阅读:
    使用springamqp发送消息及同步接收消息
    对未登陆的用户进行处理的页面
    查找某些字符是否在另一个字符串里出现的高效算法
    正则表达式
    华中地区高校第七届ACM程序设计大赛——递增序列【2012年5月27日】
    HDOJ2021 ( 发工资咯:) ) 【水题】
    循环冗余校验(CRC)【C语言 位运算】
    HDOJ2028 ( Lowest Common Multiple Plus ) 【水题,lcm】
    HDOJ2015 ( 偶数求和 ) 【水题】
    HDOJ2027 ( 统计元音 ) 【水题】
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/10684337.html
Copyright © 2011-2022 走看看