https://vjudge.net/contest/67836#problem/E
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20)
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
时间复杂度:$O(n!)$
题解:dfs 要先判断 N ,如果 N 是奇数的情况下不可能构成素数环,而且如果不先排除会报超时
代码:
#include <bits/stdc++.h> using namespace std; int N; int vis[30]; int a[30]; int prime(int x) { for(int i = 2; i * i <= x; i ++) if(x % i == 0) return 0; return 1; } void dfs(int step) { if(step == N + 1 && prime(a[1] + a[N])) { for(int i = 1; i <= N; i ++) { printf("%d", a[i]); printf("%s", i != N ? " " : " "); } return ; } for(int i = 2; i <= N; i ++) { if(vis[i] == 0) { if(prime(i + a[step - 1])) { vis[i] = 1; a[step] = i; dfs(step + 1); vis[i] = 0; } } } return ; } int main() { int cnt = 0; while(~scanf("%d", &N)) { memset(vis, 0, sizeof(vis)); memset(a, 0, sizeof(a)); printf("Case %d: ", ++cnt); if(N % 2) { printf(" "); continue; } a[1] = 1; vis[1] = 1; dfs(2); printf(" "); } return 0; }