zoukankan      html  css  js  c++  java
  • POJ 3276 Face The Right Way

    http://poj.org/problem?id=3276

    Description

    Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.

    Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.

    Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.

    Input

    Line 1: A single integer: N 
    Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.

    Output

    Line 1: Two space-separated integers: K and M

    Sample Input

    7
    B
    B
    F
    B
    F
    B
    B

    Sample Output

    3 3

    时间复杂度:$O(N ^ 2)$

    代码:

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    using namespace std;
    
    const int maxn = 1e5 + 10;
    int N;
    int dir[maxn], f[maxn];
    
    int cal(int K) {
        memset(f, 0, sizeof(f));
        int res = 0, sum = 0;
        for(int i = 0; i + K <= N; i ++) {
            if((dir[i] + sum) % 2 != 0) {
                res ++;
                f[i] = 1;
            }
            sum += f[i];
            if(i - K + 1 >= 0)
                sum -= f[i - K + 1];
        }
    
        for(int i = N - K + 1; i < N; i ++) {
            if((dir[i] + sum) % 2 != 0)
                return -1;
            if(i - K + 1 >= 0)
                sum -= f[i - K + 1];
        }
        return res;
    }
    
    void solve() {
        int K = 1, M = N;
        for(int k = 1; k <= N; k ++) {
            int m = cal(k);
            if(m >= 0 && M > m) {
                M = m;
                K = k;
            }
        }
        printf("%d %d
    ", K, M);
    }
    
    int main() {
        scanf("%d", &N);
        for(int i = 0; i < N; i ++) {
            char a[2];
            scanf("%s", a);
            if(strcmp(a, "F") == 0)
                dir[i] = 0;
            else if(strcmp(a, "B") == 0)
                dir[i] = 1;
        }
        //for(int i = 0; i < N; i ++)
            //printf("%d
    ", dir[i]);
        solve();
        return 0;
    }
    

      

  • 相关阅读:
    git push&pull命令详解
    Git常用命令总结
    SpringBoot入门之事件监听
    SpringBoot整合Redis
    十九:JDBC操作事务
    十八:使用JDBC进行批处理
    十七:使用JDBC处理MySQL大数据
    十六:使用JDBC对数据库进行CRUD
    十五:JDBC学习入门
    SpringBoot使用@Scheduled创建定时任务
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/9792693.html
Copyright © 2011-2022 走看看