zoukankan      html  css  js  c++  java
  • POJ 3276 Face The Right Way

    http://poj.org/problem?id=3276

    Description

    Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.

    Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.

    Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.

    Input

    Line 1: A single integer: N 
    Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.

    Output

    Line 1: Two space-separated integers: K and M

    Sample Input

    7
    B
    B
    F
    B
    F
    B
    B

    Sample Output

    3 3

    时间复杂度:$O(N ^ 2)$

    代码:

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    using namespace std;
    
    const int maxn = 1e5 + 10;
    int N;
    int dir[maxn], f[maxn];
    
    int cal(int K) {
        memset(f, 0, sizeof(f));
        int res = 0, sum = 0;
        for(int i = 0; i + K <= N; i ++) {
            if((dir[i] + sum) % 2 != 0) {
                res ++;
                f[i] = 1;
            }
            sum += f[i];
            if(i - K + 1 >= 0)
                sum -= f[i - K + 1];
        }
    
        for(int i = N - K + 1; i < N; i ++) {
            if((dir[i] + sum) % 2 != 0)
                return -1;
            if(i - K + 1 >= 0)
                sum -= f[i - K + 1];
        }
        return res;
    }
    
    void solve() {
        int K = 1, M = N;
        for(int k = 1; k <= N; k ++) {
            int m = cal(k);
            if(m >= 0 && M > m) {
                M = m;
                K = k;
            }
        }
        printf("%d %d
    ", K, M);
    }
    
    int main() {
        scanf("%d", &N);
        for(int i = 0; i < N; i ++) {
            char a[2];
            scanf("%s", a);
            if(strcmp(a, "F") == 0)
                dir[i] = 0;
            else if(strcmp(a, "B") == 0)
                dir[i] = 1;
        }
        //for(int i = 0; i < N; i ++)
            //printf("%d
    ", dir[i]);
        solve();
        return 0;
    }
    

      

  • 相关阅读:
    数据结构的入门
    Google 插件
    树莓派的第一次
    MySQL下载与安装
    SVN图标不显示问题
    excel 批量生成SQL语句
    版本管理工具
    RSA加密、解密、签名、验签的原理及方法
    获取客户端内网IP
    eclipse 添加svn插件
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/9792693.html
Copyright © 2011-2022 走看看