zoukankan      html  css  js  c++  java
  • CodeForces Round #515 Div.3 E. Binary Numbers AND Sum

    http://codeforces.com/contest/1066/problem/E

    You are given two huge binary integer numbers aa and bb of lengths nn and mm respectively. You will repeat the following process: if b>0b>0, then add to the answer the value a & ba & b and divide bb by 22 rounding down (i.e. remove the last digit of bb), and repeat the process again, otherwise stop the process.

    The value a & ba & b means bitwise AND of aa and bb. Your task is to calculate the answer modulo 998244353998244353.

    Note that you should add the value a & ba & b to the answer in decimal notation, not in binary. So your task is to calculate the answer in decimal notation. For example, if a=10102 (1010)a=10102 (1010) and b=10002 (810)b=10002 (810), then the value a & ba & b will be equal to 88, not to 10001000.

    Input

    The first line of the input contains two integers nn and mm (1n,m21051≤n,m≤2⋅105) — the length of aa and the length of bb correspondingly.

    The second line of the input contains one huge integer aa. It is guaranteed that this number consists of exactly nn zeroes and ones and the first digit is always 11.

    The third line of the input contains one huge integer bb. It is guaranteed that this number consists of exactly mm zeroes and ones and the first digit is always 11.

    Output

    Print the answer to this problem in decimal notation modulo 998244353998244353.

    Examples
    input
    Copy
    4 4
    1010
    1101
    output
    Copy
    12
    input
    Copy
    4 5
    1001
    10101
    output
    Copy
    11

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long ll;
    int N, M;
    char A[200010], B[200010];
    ll sum[200010];
    
    ll Pow(ll x, ll n, ll mod) {
        ll res = 1;
        while(n > 0) {
            if(n % 2 == 1) {
                res = res * x;
                res = res % mod;
            }
            x = x * x;
            x = x % mod;
            n >>= 1;
        }
        return res;
    }
    
    int main() {
        scanf("%d%d", &N, &M);
        scanf("%s%s", A, B);
        memset(sum, 0, sizeof(sum));
        for(int i = N - 1; i >= 0; i --) {
            sum[N - 1 - i] =(A[i] - '0') * Pow(2, N - 1 - i, 998244353) + sum[N - i - 2];
            sum[N - 1 - i] %= 998244353;
        }
    
        if(M == 1 && A[N - 1] == '1')
            printf("1
    ");
        else if(M == 1 && A[N - 1] == '0')
            printf("0
    ");
        else {
            ll ans = 0;
            for(int i = 0; i <= N / 2 - 1; i ++)
                swap(A[i], A[N - 1 - i]);
            for(int i = 0; i <= M / 2 - 1; i ++)
                swap(B[i], B[M - 1 - i]);
    
            for(int i = 0; i < M; i ++) {
                if(B[i] == '1') {
                    if(i >= N)
                        sum[i] = sum[N - 1];
                    ans += sum[i];
                    ans %= 998244353;
                }
            }
            printf("%I64d
    ", ans % 998244353);
        }
        return 0;
    }
    

      

  • 相关阅读:
    洛谷 P1578 奶牛浴场 题解
    LOJ167 康托展开 题解
    三校联训 【NOIP模拟】寻找
    洛谷 P1809 过河问题 题解
    有关多边形面积的总结
    LOJ 103 字串查找 题解
    洛谷 P2384 最短路 题解
    POJ 2492 A Bug's Life 题解
    LOJ 10214 计算器 题解
    洛谷 P2868 [USACO07DEC]观光奶牛Sightseeing Cows 题解
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/9822809.html
Copyright © 2011-2022 走看看