zoukankan      html  css  js  c++  java
  • PAT 甲级 1024 Palindromic Number

    https://pintia.cn/problem-sets/994805342720868352/problems/994805476473028608

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

    Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.

    Input Specification:

    Each input file contains one test case. Each case consists of two positive numbers N and K, where N (≤) is the initial numer and K (≤) is the maximum number of steps. The numbers are separated by a space.

    Output Specification:

    For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.

    Sample Input 1:

    67 3
    

    Sample Output 1:

    484
    2
    

    Sample Input 2:

    69 3
    

    Sample Output 2:

    1353
    3

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    bool pal(char a[]) {
        int len = strlen(a);
        for (int i = 0; i < len; i ++)
            if (a[i] != a[len - 1 - i])
                return false;
        return true;
    }
    
    void add(char a[]) {
        char tmp[1000];
        int k = 0;
        int len = strlen(a);
        for (int i = 0; i < len; i ++) {
            tmp[i] = a[i] - '0' + a[len - 1 - i] - '0' + k;
            k = tmp[i] / 10;
            tmp[i] = tmp[i] % 10 + '0';
        }
        for (int i = 0; i < len; i++)
            a[i] = tmp[i];
        if (k)
            a[len ++] = '1';
        a[len] = '';
    }
    
    int main() {
        char a[1000];
        int k;
        scanf("%s%d", a, &k);
        int cnt = 0;
        while(cnt < k && !pal(a)) {
            add(a);
            cnt ++;
        }
        
        int len = strlen(a);
        for (int i = len - 1; i >= 0; i --)
            printf("%c", a[i]);
        printf("
    %d
    ", cnt);
    }
    

      

  • 相关阅读:
    单细胞分析实录(13): inferCNV结合UPhyloplot2分析肿瘤进化
    单细胞分析实录(12): 如何推断肿瘤细胞
    单细胞分析实录(11): inferCNV的基本用法
    用网络图展示富集分析
    R绘图(6): 拯救初学者——发表级绘图全能包ggpubr
    R绘图(5): 一文学会桑基图的画法
    db2备份与还原
    SAP R/3系统的启动和关闭
    重启sap过程
    DB2重启数据库实例
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/9841844.html
Copyright © 2011-2022 走看看