zoukankan      html  css  js  c++  java
  • POJ 3268 D-Silver Cow Party

    http://poj.org/problem?id=3268

    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: NM, and X 
    Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

    Output

    Line 1: One integer: the maximum of time any one cow must walk.

    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3

    Sample Output

    10

    代码:

    #include <iostream>
    #include <string.h>
    #include <stdio.h>
    using namespace std;
    #define MAXV 1010
    #define inf 0x3f3f3f3f
    
    int mp[MAXV][MAXV], d[MAXV], dback[MAXV];
    bool vis[MAXV];
    int n, m, x;
    
    int dijkstra(){
    	int v, mi;
    	for(int i = 1; i <= n; i ++) {
    		vis[i] = 0;
    		d[i] = mp[x][i];
    		dback[i] = mp[i][x];
    	}
    
    	for(int i = 1; i <= n; i ++){
    		mi = inf;
    		for(int j = 1; j <= n; j ++)
    			if(!vis[j] && d[j] < mi) {
    				v = j;
    				mi = d[j];
    			}
            vis[v] = 1;
            for(int j = 1; j <= n; j ++) {
                if(!vis[j] && mp[v][j] + d[v] < d[j])
                    d[j] = mp[v][j] + d[v];
            }
    	}
    
    	memset(vis, 0, sizeof(vis));
    
    	for(int i = 1; i <= n; i ++) {
    		mi = inf;
    		for(int j = 1; j <= n; j ++)
    			if(!vis[j] && dback[j] < mi){
    				v = j;
    				mi = dback[j];
    			}
    			vis[v] = 1;
    			for(int j = 1; j <= n; j ++){
    				if(!vis[j] && mp[j][v] + dback[v] < dback[j])
    					dback[j] = mp[j][v] + dback[v];
    			}
    	}
    	mi = -1;
    	for(int i = 1; i <= n; i ++) {
    		if(d[i] + dback[i] > mi)
    			mi = d[i] + dback[i];
    	}
    	return mi;
    }
    
    int main(){
    	int a, b, c;
    	while(~scanf("%d%d%d", &n, &m, &x)){
    		for(int i = 1; i <= n; i ++){
    			for(int j = 1; j <= n; j ++)
    				if(i != j) mp[i][j] = inf;
    				else mp[i][j]=0;
    		}
    
    		for(int i = 1;i <= m; i ++){
    			scanf("%d%d%d", &a, &b, &c);
    			mp[a][b] = c;
    		}
    
    		printf("%d
    ",dijkstra());
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    没有完成的题目
    哈尔滨工程大学 ACM online contest 1008 how many
    POJ 2976 分数规划
    长沙理工 ACM 数位 DP 1488
    POJ 2663
    USETC 1821 AC 自动机
    长沙理工 ACM 分数规划 1494
    正则表达式基础知识(转)
    上传头像代码
    datalist 分页(转)
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/9879164.html
Copyright © 2011-2022 走看看