zoukankan      html  css  js  c++  java
  • 如何合理地估算线程池大小?(转发)

    如何合理地估算线程池大小?

    这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:

    如何设计线程池大小,使得可以在1s内处理完20个Transaction?

    计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。

    很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。

    再来第二种简单的但不知是否可行的方法(N为CPU总核数):

    • 如果是CPU密集型应用,则线程池大小设置为N+1
    • 如果是IO密集型应用,则线程池大小设置为2N+1

    如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。

    接下来在这个文档:服务器性能IO优化 中发现一个估算公式:

    1. 最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

    比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

    1. 最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

    可以得出一个结论:

    线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

    上一种估算方法也和这个结论相合。

    一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:

    • 尽量提高短板操作的并行化比率,比如多线程下载技术
    • 增强短板能力,比如用NIO替代IO

    第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:

    1. 加速比=优化前系统耗时 / 优化后系统耗时

    加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:

    1. Speedup <= 1 / (F + (1-F)/N)

    当N足够大时,串行化比率F越小,加速比Speedup越大。

    写到这里,我突然冒出一个问题。

    是否使用线程池就一定比使用单线程高效呢?

    答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:

    • 多线程带来线程上下文切换开销,单线程就没有这种开销

    当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。

    所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。

    最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:

    001 package pool_size_calculate;
         
    003
        import java.math.BigDecimal;
    004
        import java.math.RoundingMode;
    005
        import java.util.Timer;
    006
        import java.util.TimerTask;
    007
        import java.util.concurrent.BlockingQueue;
    008
         
    009
        /**
    010
         * A class that calculates the optimal thread pool boundaries. It takes the
    011
         * desired target utilization and the desired work queue memory consumption as
    012
         * input and retuns thread count and work queue capacity.
    013
         *
    014
         * @author Niklas Schlimm
    015
         *
    016
         */
    017
        public abstract class PoolSizeCalculator {
    018
         
    019
            /**
    020
             * The sample queue size to calculate the size of a single {@link Runnable}
    021
             * element.
    022
             */
    023
            private final int SAMPLE_QUEUE_SIZE = 1000;
    024
         
    025
            /**
    026
             * Accuracy of test run. It must finish within 20ms of the testTime
    027
             * otherwise we retry the test. This could be configurable.
    028
             */
    029
            private final int EPSYLON = 20;
    030
         
    031
            /**
    032
             * Control variable for the CPU time investigation.
    033
             */
    034
            private volatile boolean expired;
    035
         
    036
            /**
    037
             * Time (millis) of the test run in the CPU time calculation.
    038
             */
    039
            private final long testtime = 3000;
    040
         
    041
            /**
    042
             * Calculates the boundaries of a thread pool for a given {@link Runnable}.
    043
             *
    044
             * @param targetUtilization
    045
             *            the desired utilization of the CPUs (0 <= targetUtilization <=   *            1)     * @param targetQueueSizeBytes   *            the desired maximum work queue size of the thread pool (bytes)     */     protected void calculateBoundaries(BigDecimal targetUtilization,            BigDecimal targetQueueSizeBytes) {      calculateOptimalCapacity(targetQueueSizeBytes);         Runnable task = creatTask();        start(task);        start(task); // warm up phase       long cputime = getCurrentThreadCPUTime();       start(task); // test intervall      cputime = getCurrentThreadCPUTime() - cputime;      long waittime = (testtime * 1000000) - cputime;         calculateOptimalThreadCount(cputime, waittime, targetUtilization);  }   private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {        long mem = calculateMemoryUsage();      BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(              mem), RoundingMode.HALF_UP);        System.out.println("Target queue memory usage (bytes): "                + targetQueueSizeBytes);        System.out.println("createTask() produced "                 + creatTask().getClass().getName() + " which took " + mem               + " bytes in a queue");         System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);       System.out.println("* Recommended queue capacity (bytes): "                 + queueCapacity);   }   /**      * Brian Goetz' optimal thread count formula, see 'Java Concurrency in   * Practice' (chapter 8.2)   *       * @param cpu    *            cpu time consumed by considered task   * @param wait   *            wait time of considered task   * @param targetUtilization      *            target utilization of the system   */     private void calculateOptimalThreadCount(long cpu, long wait,           BigDecimal targetUtilization) {         BigDecimal waitTime = new BigDecimal(wait);         BigDecimal computeTime = new BigDecimal(cpu);       BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()                .availableProcessors());        BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)                 .multiply(                      new BigDecimal(1).add(waitTime.divide(computeTime,                              RoundingMode.HALF_UP)));        System.out.println("Number of CPU: " + numberOfCPU);        System.out.println("Target utilization: " + targetUtilization);         System.out.println("Elapsed time (nanos): " + (testtime * 1000000));        System.out.println("Compute time (nanos): " + cpu);         System.out.println("Wait time (nanos): " + wait);       System.out.println("Formula: " + numberOfCPU + " * "                + targetUtilization + " * (1 + " + waitTime + " / "                 + computeTime + ")");       System.out.println("* Optimal thread count: " + optimalthreadcount);    }   /**      * Runs the {@link Runnable} over a period defined in {@link #testtime}.     * Based on Heinz Kabbutz' ideas     * (http://www.javaspecialists.eu/archive/Issue124.html).    *       * @param task   *            the runnable under investigation   */     public void start(Runnable task) {      long start = 0;         int runs = 0;       do {            if (++runs > 5) {
    046
                        throw new IllegalStateException("Test not accurate");
    047
                    }
    048
                    expired = false;
    049
                    start = System.currentTimeMillis();
    050
                    Timer timer = new Timer();
    051
                    timer.schedule(new TimerTask() {
    052
                        public void run() {
    053
                            expired = true;
    054
                        }
    055
                    }, testtime);
    056
                    while (!expired) {
    057
                        task.run();
    058
                    }
    059
                    start = System.currentTimeMillis() - start;
    060
                    timer.cancel();
    061
                } while (Math.abs(start - testtime) > EPSYLON);
    062
                collectGarbage(3);
    063
            }
    064
         
    065
            private void collectGarbage(int times) {
    066
                for (int i = 0; i < times; i++) {
    067
                    System.gc();
    068
                    try {
    069
                        Thread.sleep(10);
    070
                    } catch (InterruptedException e) {
    071
                        Thread.currentThread().interrupt();
    072
                        break;
    073
                    }
    074
                }
    075
            }
    076
         
    077
            /**
    078
             * Calculates the memory usage of a single element in a work queue. Based on
    079
             * Heinz Kabbutz' ideas
    080
             * (http://www.javaspecialists.eu/archive/Issue029.html).
    081
             *
    082
             * @return memory usage of a single {@link Runnable} element in the thread
    083
             *         pools work queue
    084
             */
    085
            public long calculateMemoryUsage() {
    086
                BlockingQueue queue = createWorkQueue();
    087
                for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
    088
                    queue.add(creatTask());
    089
                }
    090
                long mem0 = Runtime.getRuntime().totalMemory()
    091
                        - Runtime.getRuntime().freeMemory();
    092
                long mem1 = Runtime.getRuntime().totalMemory()
    093
                        - Runtime.getRuntime().freeMemory();
    094
                queue = null;
    095
                collectGarbage(15);
    096
                mem0 = Runtime.getRuntime().totalMemory()
    097
                        - Runtime.getRuntime().freeMemory();
    098
                queue = createWorkQueue();
    099
                for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
    100
                    queue.add(creatTask());
    101
                }
    102
                collectGarbage(15);
    103
                mem1 = Runtime.getRuntime().totalMemory()
    104
                        - Runtime.getRuntime().freeMemory();
    105
                return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
    106
            }
    107
         
    108
            /**
    109
             * Create your runnable task here.
    110
             *
    111
             * @return an instance of your runnable task under investigation
    112
             */
    113
            protected abstract Runnable creatTask();
    114
         
    115
            /**
    116
             * Return an instance of the queue used in the thread pool.
    117
             *
    118
             * @return queue instance
    119
             */
    120
            protected abstract BlockingQueue createWorkQueue();
    121
         
    122
            /**
    123
             * Calculate current cpu time. Various frameworks may be used here,
    124
             * depending on the operating system in use. (e.g.
    125
             * http://www.hyperic.com/products/sigar). The more accurate the CPU time
    126
             * measurement, the more accurate the results for thread count boundaries.
    127
             *
    128
             * @return current cpu time of current thread
    129
             */
    130
            protected abstract long getCurrentThreadCPUTime();
    131
         
    132
        }

    然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:

    01
        package pool_size_calculate;
    02
         
    03
        import java.io.BufferedReader;
    04
        import java.io.IOException;
    05
        import java.io.InputStreamReader;
    06
        import java.lang.management.ManagementFactory;
    07
        import java.math.BigDecimal;
    08
        import java.net.HttpURLConnection;
    09
        import java.net.URL;
    10
        import java.util.concurrent.BlockingQueue;
    11
        import java.util.concurrent.LinkedBlockingQueue;
    12
         
    13
        public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {
    14
         
    15
            @Override
    16
            protected Runnable creatTask() {
    17
                return new AsyncIOTask();
    18
            }
    19
         
    20
            @Override
    21
            protected BlockingQueue createWorkQueue() {
    22
                return new LinkedBlockingQueue(1000);
    23
            }
    24
         
    25
            @Override
    26
            protected long getCurrentThreadCPUTime() {
    27
                return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
    28
            }
    29
         
    30
            public static void main(String[] args) {
    31
                PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
    32
                poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
    33
            }
    34
         
    35
        }
    36
         
    37
        /**
    38
         * 自定义的异步IO任务
    39
         * @author Will
    40
         *
    41
         */
    42
        class AsyncIOTask implements Runnable {
    43
         
    44
            @Override
    45
            public void run() {
    46
                HttpURLConnection connection = null;
    47
                BufferedReader reader = null;
    48
                try {
    49
                    String getURL = "http://baidu.com";
    50
                    URL getUrl = new URL(getURL);
    51
         
    52
                    connection = (HttpURLConnection) getUrl.openConnection();
    53
                    connection.connect();
    54
                    reader = new BufferedReader(new InputStreamReader(
    55
                            connection.getInputStream()));
    56
         
    57
                    String line;
    58
                    while ((line = reader.readLine()) != null) {
    59
                        // empty loop
    60
                    }
    61
                }
    62
         
    63
                catch (IOException e) {
    64
         
    65
                } finally {
    66
                    if(reader != null) {
    67
                        try {
    68
                            reader.close();
    69
                        }
    70
                        catch(Exception e) {
    71
         
    72
                        }
    73
                    }
    74
                    connection.disconnect();
    75
                }
    76
         
    77
            }
    78
         
    79
        }

    得到的输出如下:

    01
        Target queue memory usage (bytes): 100000
    02
        createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
    03
        Formula: 100000 / 40
    04
        * Recommended queue capacity (bytes): 2500
    05
        Number of CPU: 4
    06
        Target utilization: 1
    07
        Elapsed time (nanos): 3000000000
    08
        Compute time (nanos): 47181000
    09
        Wait time (nanos): 2952819000
    10
        Formula: 4 * 1 * (1 + 2952819000 / 47181000)
    11
        * Optimal thread count: 256

    推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:

    1. ThreadPoolExecutor pool = new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));

    原创文章,转载请注明: 转载自并发编程网 – ifeve.com本文链接地址: 如何合理地估算线程池大小?

  • 相关阅读:
    iframe嵌套
    fiddler——一款莱斯的抓包工具
    工程代码规范和更新规范
    新项目新工作空间新仓库新setting文件
    quartz-job实现实时或定时发送短信任务
    quartz-job实现定时任务配置
    quartz开源作业调度框架的配置
    Confluence 6 让一个空间可以公众访问
    Confluence 6 管理和恢复空间管理权限
    Confluence 6 指派和撤销空间权限
  • 原文地址:https://www.cnblogs.com/zmengj/p/10143311.html
Copyright © 2011-2022 走看看