Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
InputEach test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
OutputOutput the maximal summation described above in one line.
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
这题好难啊,看了很久题解才看明白。
题意:给定n个数,从中选m串不重合的子串,求m串最大的子串和。
解题思路:将问题分解为子问题,可从两个角度出发:
从m的角度来看,当m等于1的时候,其实就是求最大连续子串和的题。
从n的角度来看,每个数字无非就两种状态, 一是在上个串;二是新串的起始。
这样思路就出来了:
首先建立个dp[m][n]的数组。
假设m=1时,我们遍历这n个数,每个数用dp数组记录:
dp[1][i]=max(dp[1][i-1]+nu[i],0+nu[i])=max(dp[1][i-1],0)+nu[i];
这样m=1时所有数的状态就出来了。
那么当m=2呢,无非在m=1的基础上,看从哪里截取,好让最后的两个串和最大。
但这里又牵扯到一点,我们依然从上面两个角度出发:
从m的角度来看,m=2时,要截取两个串。两个串的位置是不定的,只要不重合就行,也就是说,
如果要建第二个串,第一个串后面任何一个数都可以作为新串的开始,那该怎么确定呢? 这就
要从n的角度来看,每个数两种状态,一是在上个串,二是新串的开始,如果这个数作为新串,
那它的上个串一定是这个数前面所有数中dp[1][2]最大的,如果不作为新串,还要加这个数的
话,就是直接dp[1][i]+nu[i];
m=3……n,以此类推,可得最后的状态转移方程是:
dp[i][j]=max(dp[i-1][j]+nu[i],max(dp[0][j-1]~dp[i-1][j-1])+nu[i]);
但因为这题又卡内存,所以用这个二维数组过不了。又因为其实每一层的数只和该数前面的上一
层的最大值有关,即只和max(dp[0][j-1]~dp[i-1][j-1])有关,所以用个记录最大值的数
组mx[n]代替二维数组就行了。
即最终的转移方程为:d[j]=max(d[j-1],pre[j-1])+num[j]; 附ac代码:
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 using namespace std; 5 const int M = 1111111; 6 const int inf = 0x3f3f3f3f; 7 int nu[M],dp[M],mx[M]; 8 int main(){ 9 int n,m,maxx; 10 while(~scanf("%d %d",&m,&n)){ 11 memset(dp,0,sizeof(dp)); 12 memset(mx,0,sizeof(mx)); 13 for(int i=1;i<=n;i++){ 14 scanf("%d",&nu[i]); 15 } 16 for(int i=1;i<=m;i++){ 17 maxx=-inf; 18 for(int j=i;j<=n;j++){ 19 dp[j]=max(dp[j-1]+nu[j],mx[j-1]+nu[j]); 20 mx[j-1]=maxx; 21 maxx=max(maxx,dp[j]); 22 } 23 } 24 printf("%d ",maxx); 25 } 26 return 0; 27 }