zoukankan      html  css  js  c++  java
  • hdu 6242 Geometry Problem

    Geometry Problem

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 1722    Accepted Submission(s): 304
    Special Judge


    Problem Description
    Alice is interesting in computation geometry problem recently. She found a interesting problem and solved it easily. Now she will give this problem to you :

    You are given N distinct points (Xi,Yi) on the two-dimensional plane. Your task is to find a point P and a real number R, such that for at least N2 given points, their distance to point P is equal to R.
     
    Input
    The first line is the number of test cases.

    For each test case, the first line contains one positive number N(1N105).

    The following N lines describe the points. Each line contains two real numbers Xi and Yi (0|Xi|,|Yi|103) indicating one give point. It's guaranteed that N points are distinct.
     
    Output
    For each test case, output a single line with three real numbers XP,YP,R, where (XP,YP) is the coordinate of required point PThree real numbers you output should satisfy 0|XP|,|YP|,R109.

    It is guaranteed that there exists at least one solution satisfying all conditions. And if there are different solutions, print any one of them. The judge will regard two point's distance as R if it is within an absolute error of 103 of R.
     
    Sample Input
    1 7 1 1 1 0 1 -1 0 1 -1 1 0 -1 -1 0
     
    Sample Output
    0 0 1
     
    这一题让我学会了随机数法。
     
    题意:找出一个圆使至少n/2个点在圆上(数据保证有解)
     
    解题思路:用普通的for循环肯定会超,因为数据保证有解,我们随机三个点,这三个点都在圆上的概率是0.5*0.5*0.5=0.125,三个点不都在圆上的概率是7/8,那么随机100次,概率就是(7/8)^100,约为1e-6,基本接近于0了,也就是说随机一百遍基本就能找到三个点都在圆上的情况,也就能找到那个圆的圆心和半径了。
     
    注意坑点:1.n<5的情况要另考虑  2.三点共线  3.判断找到圆的条件(我一开始是cnt<=n/2,这样n如果从0开始遍历答案就不对了
     
    附ac代码:
     1 #include <iostream>
     2 #include <string.h>
     3 #include <algorithm>
     4 #include <cstdio>
     5 #include <cstdlib>
     6 #include <cmath>
     7 using namespace std;
     8 typedef long long ll;
     9 const int maxn = 1e5+10;
    10 struct nod
    11 {
    12     double x;
    13     double y;
    14 }nu[maxn];
    15 int vis[maxn];
    16 double xx1,yy1,xx2,yy2,xx3,yy3;
    17 void getr(double &x,double &y,double &r)
    18 {
    19     //   printf("%lf %lf
    ",xx2,xx1);
    20     double a=2*(xx2-xx1);
    21     double b=2*(yy2-yy1);
    22     double c=xx2*xx2-xx1*xx1+yy2*yy2-yy1*yy1;
    23     double d=2*(xx3-xx2);
    24     double e=2*(yy3-yy2);
    25     double f=xx3*xx3-xx2*xx2+yy3*yy3-yy2*yy2;
    26     x=(b*f-e*c)/(b*d-e*a);
    27     y=(a*f-d*c)/(a*e-b*d);
    28     r=sqrt((x-xx1)*(x-xx1)+(y-yy1)*(y-yy1));
    29     //   printf("%lf %lf %lf
    ",x,y,r);
    30 }
    31 int main()
    32 {
    33     int t;
    34     int n;
    35     scanf("%d",&t);
    36     while(t--)
    37     {
    38         
    39         scanf("%d",&n);
    40         for(int i=0;i<n;++i)
    41             scanf("%lf%lf",&nu[i].x,&nu[i].y);
    42         if(n<=2)
    43         {
    44             printf("%lf %lf %lf
    ",nu[0].x,nu[0].y,0.0);
    45         }
    46         else if(n<=4)
    47         {
    48             double x,y,r;
    49             x=(nu[0].x+nu[1].x)/2;
    50             y=(nu[0].y+nu[1].y)/2;
    51             r=sqrt((x-nu[0].x)*(x-nu[0].x)+(y-nu[0].y)*(y-nu[0].y));
    52             printf("%lf %lf %lf
    ",x,y,r);
    53         }
    54         else
    55         {
    56             while (true)
    57             {
    58                 int coo1=rand()%n;
    59                 int coo2=rand()%n;
    60                 int coo3=rand()%n;
    61                 if(coo1==coo2 || coo1==coo3 || coo2==coo3) continue;
    62                 xx1=nu[coo1].x;  yy1=nu[coo1].y;
    63                 xx2=nu[coo2].x;  yy2=nu[coo2].y;
    64                 xx3=nu[coo3].x;  yy3=nu[coo3].y;
    65                 if(fabs((yy3-yy2)*(xx2-xx1)-(xx3-xx2)*(yy2-yy1))<=1e-6)
    66                     continue;
    67                 double x=0,y=0,r=0;
    68                 getr(x,y,r);
    69                 int cnt=0;
    70                 for(int i=0;i<n;++i)
    71                 {
    72                     if(fabs(r*r- ((nu[i].x-x)*(nu[i].x-x)+(nu[i].y-y)*(nu[i].y-y)) )<=1e-6)
    73                         ++cnt;
    74                 }
    75                 if(cnt*2>=n)
    76                 {
    77                     printf("%lf %lf %lf
    ",x,y,r);
    78                     break;
    79                 }
    80             }
    81         }
    82     }
    83     return 0;
    84 }
    View Code
  • 相关阅读:
    Unbuntu--安装VMware Tools
    方法引用的基本使用
    Stream流
    Stream流的常用方法
    枚举
    编程式路由导航
    向路由组件传递数据
    缓存路由组件
    嵌套路由
    基本路由
  • 原文地址:https://www.cnblogs.com/zmin/p/7891283.html
Copyright © 2011-2022 走看看