zoukankan      html  css  js  c++  java
  • codeforces

    D. Almost Arithmetic Progression
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Polycarp likes arithmetic progressions. A sequence [a1,a2,,an][a1,a2,…,an] is called an arithmetic progression if for each ii (1i<n1≤i<n ) the value ai+1aiai+1−ai is the same. For example, the sequences [42][42] , [5,5,5][5,5,5] , [2,11,20,29][2,11,20,29] and [3,2,1,0][3,2,1,0] are arithmetic progressions, but [1,0,1][1,0,1] , [1,3,9][1,3,9] and [2,3,1][2,3,1] are not.

    It follows from the definition that any sequence of length one or two is an arithmetic progression.

    Polycarp found some sequence of positive integers [b1,b2,,bn][b1,b2,…,bn] . He agrees to change each element by at most one. In the other words, for each element there are exactly three options: an element can be decreased by 11 , an element can be increased by 11 , an element can be left unchanged.

    Determine a minimum possible number of elements in bb which can be changed (by exactly one), so that the sequence bb becomes an arithmetic progression, or report that it is impossible.

    It is possible that the resulting sequence contains element equals 00 .

    Input

    The first line contains a single integer nn(1n100000)(1≤n≤100000) — the number of elements in bb .

    The second line contains a sequence b1,b2,,bnb1,b2,…,bn(1bi109)(1≤bi≤109) .

    Output

    If it is impossible to make an arithmetic progression with described operations, print -1. In the other case, print non-negative integer — the minimum number of elements to change to make the given sequence becomes an arithmetic progression. The only allowed operation is to add/to subtract one from an element (can't use operation twice to the same position).

    Examples
    Input
    Copy
    4
    24 21 14 10
    Output
    Copy
    3
    Input
    Copy
    2
    500 500
    Output
    Copy
    0
    Input
    Copy
    3
    14 5 1
    Output
    Copy
    -1
    Input
    Copy
    5
    1 3 6 9 12
    Output
    Copy
    1
    Note

    In the first example Polycarp should increase the first number on 11 , decrease the second number on 11 , increase the third number on 11 , and the fourth number should left unchanged. So, after Polycarp changed three elements by one, his sequence became equals to [25,20,15,10][25,20,15,10] , which is an arithmetic progression.

    In the second example Polycarp should not change anything, because his sequence is an arithmetic progression.

    In the third example it is impossible to make an arithmetic progression.

    In the fourth example Polycarp should change only the first element, he should decrease it on one. After that his sequence will looks like [0,3,6,9,12][0,3,6,9,12] , which is an arithmetic progression.

    解题思路:等差数列的公差相等, 所以前两个数就可以确定公差,记录后面的数满足公差需要多少步即可,O(6 * n)的复杂度。

    附ac代码:

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #include <string>
     5 #include <cmath>
     6 #include <string>
     7 #include <iostream>
     8 #include <map>
     9 #include <queue>
    10 #include <stack>
    11 #include <cstdlib>
    12 const int maxn = 3 * 1e5 + 10;
    13 const int inf = 0x3f3f3f3f;
    14 
    15 using namespace std;
    16 typedef long long ll;
    17 const ll mod = 1e9 + 7;
    18 int nu[maxn];
    19 int tem[maxn];
    20 queue<int>q;
    21 
    22 int main(int argc, const char * argv[]) {
    23     int n;
    24     scanf("%d", &n);
    25     for(int i = 0; i < n; ++i)
    26     {
    27         scanf("%d", &nu[i]);
    28     }
    29     if(n <= 2)
    30     {
    31         puts("0");
    32         return 0;
    33     }
    34     int i, j, k;
    35     int ans = inf;
    36     for(i = -1; i <= 1; ++i)
    37     {
    38         for(j = -1; j <= 1; ++j)
    39         {
    40             tem[0] = nu[0] + i;
    41             tem[1] = nu[1] + j;
    42             int d = tem[1] - tem[0];
    43             int cnt = abs(i) + abs(j);
    44             for(k = 2; k < n; ++k)
    45             {
    46                 int u = nu[k] - tem[k - 1];
    47                 tem[k] = d + tem[k - 1];
    48                 if(u == d) continue;
    49                 if(abs(u - d) <= 1)
    50                 {
    51                     cnt++;
    52                   //  printf("%d ", tem[k]);
    53                 }
    54                 else break;
    55             }
    56             if(k == n)
    57             {
    58                 ans = min(cnt, ans);
    59             }
    60         }
    61     }
    62     if(ans == inf) puts("-1");
    63     else
    64     printf("%d
    ", ans);
    65     return 0;
    66 }
    View Code
  • 相关阅读:
    Linux面试题汇总答案
    VMWARE ESXI 虚拟硬盘的格式:精简置备、厚置备延迟置零、厚置备置零
    [Python基础知识]正则
    [代码评审1]代码评审
    [EF2]Sneak Preview: Persistence Ignorance and POCO in Entity Framework 4.0
    [EF1]POCOs(Plain Old C# Object)Entity Framework 4.x: POCOs入门
    [网站性能3]SqlServer中Profiler的使用
    [网站性能2]Asp.net平台下网站性能调优的实战方案
    [网站性能1]对.net系统架构改造的一点经验和教训
    2.1 python使用MongoDB 示例代码
  • 原文地址:https://www.cnblogs.com/zmin/p/9039213.html
Copyright © 2011-2022 走看看