zoukankan      html  css  js  c++  java
  • retinex图像增强算法的研究

         图像增强方面我共研究了Retinex、暗通道去雾、ACE等算法。其实,它们都是共通的。甚至可以说,Retinex和暗通道去雾就是同一个算法的两个不同视角,而ACE算法又是将Retinex和灰度世界等白平衡理论相结合的产物。下面将依次讨论,每个算法写一个心得,欢迎拍砖。

         今天先写Retinex。Retinex理论认为,人眼观测到的图像S是光照图像L和物体反射图像R的乘积。而R才是真实的恒常性的图像,但是怎么从观测图像S中计算R呢?这是个病态问题,根本不可解。研究者就通过加以一定的约束条件,比如光照L具有缓变平滑性、L与S有一定的弱相关性等等,然后估计出光照图像L,进而得到R。

        从S中如何估计L,就衍生出了各种各样的实现方式,影响较大的有:中心环绕、随机路径、变分、金字塔迭代等等方法。其中,中心环绕算法无疑是影响最大的retinex实现方式,使用高斯尺度算子来估计光照图像,计算速度快。当然,它也有一些缺点:

        1) 在强光阴影过渡区容易出现光晕现象;

             主要是由于高斯算子不能在过渡区很好的估计光照所致。

        2) 对比较亮的图像处理欠佳,比如雾霾图像。

            主要原因有二:retinex不是专门的去雾算法;对数化处理压缩了亮区域的显示范围,导致其细节弱化。

            由于L和R是乘积的关系,为了便于处理,一般对观测图像S先进行对数处理,这样就转换成了加性关系。使用对数处理可以极大的提升暗区域的像素值,以增加对比度,但代价是压缩了亮区图像的显示范围,导致其细节模糊甚至丢失。所以个人认为,retinex适用于处理那些光照不足黑不拉几的图像,对于比较亮的图像,不妨先进行反色处理再retinex。

        3) 色彩保持能力较弱。

            因为对rgb三个颜色通道各自归一化处理的缘故,有论文提到了一些改善方法,但我发现还是不容乐观。

            此外,三通道各自归一化处理后,其颜色均值是接近于128的,如果后面再跟一个指数化操作(对数处理的反操作),将导致图像颜色明显偏暗,所以这是一般retinex算法只有对数处理没有指数处理的缘故。

        所以,我对中心环绕算法做了一点点改进:

        主要如下:

            1)使用引导滤波来快速估计光照图像,减少光晕的出现,实验表明,该步骤对色彩保持能力也有一定的提升;

            2)在使用多个尺度算子进行合成的时候,不是简单的做均值处理;

            3)在完成retinex处理之后,再做一次简单的gamma校正,使其均值接近于128。

        下面给实验结果图, 可见色彩保持的还不错哦,对雾霾图像也有较好的效果。

    软件EXE下载地址:https://pan.baidu.com/s/1dFGBAP7

    程序采用python实现,未经性能优化,exe中打包了python及numpy wxpython opencv等重量级模块,故体积较大,如杀毒软件误报为病毒,请信任运行。

  • 相关阅读:
    句法分析树标注集
    LaTeX入门教程(二)
    LaTeX入门教程(一)
    汉语词性对照表[北大标准/中科院标准]
    Python版C语言词法分析器
    QT5.4 计算器程序 打包&发布,解决dll的最新解决方案
    解决Android SDK Manager更新(一个更新Host的程序的原理实现和源码)
    增加个人博客地址,欢迎访问
    Matlab R2012b启动出现License Manager Error -15
    C++中二维数组的动态创建与处理
  • 原文地址:https://www.cnblogs.com/zmshy2128/p/6126987.html
Copyright © 2011-2022 走看看