zoukankan      html  css  js  c++  java
  • [NOIP2015] 子串(dp)

    题目描述

    有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出 的位置不同也认为是不同的方案。

    输入输出格式

    输入格式:

    输入文件名为 substring.in。

    第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问

    题描述中所提到的 k,每两个整数之间用一个空格隔开。 第二行包含一个长度为 n 的字符串,表示字符串 A。 第三行包含一个长度为 m 的字符串,表示字符串 B。

    输出格式:

    输出文件名为 substring.out。 输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求[b]输出答案对 1,000,000,007 取模的结果。[/b]

    输入输出样例

    输入样例#1:
    6 3 1 
    aabaab 
    aab
    输出样例#1:
    2
    输入样例#2:
    6 3 2 
    aabaab 
    aab
    输出样例#2:
    7
    输入样例#3:
    6 3 3 
    aabaab 
    aab
    输出样例#3:
    7

    说明

    对于第 1 组数据:1≤n≤500,1≤m≤50,k=1;

    对于第 2 组至第 3 组数据:1≤n≤500,1≤m≤50,k=2;

    对于第 4 组至第 5 组数据:1≤n≤500,1≤m≤50,k=m;

    对于第 1 组至第 7 组数据:1≤n≤500,1≤m≤50,1≤k≤m;

    对于第 1 组至第 9 组数据:1≤n≤1000,1≤m≤100,1≤k≤m;

    对于所有 10 组数据:1≤n≤1000,1≤m≤200,1≤k≤m。

      

    • 比较厉害的dp题,搞了好长时间才搞出来的。
    • 而且还有各种坑,卡时间,卡空间。。。。。。
    • 不会讲很多,只是简单的说一下思路。
    • f[k][i][j]表示分了k段,第一个串取了前i个,第二个串已经构成了前j个的方案数。显然,当s[i]!=ss[j]时f[k][i][j]=0;
    • f[k][i][j]=∑f[k-1][L][j-1] 其中s[i]==ss[j] && s[i-1]!=ss[j-1] && 0<L<i
    • f[k][i][j]=f[k-1][L][j-1]+f[k][i-1][j-1],其中s[i]==ss[j] && s[i-1]==ss[j-1] && 0<L<i
    • 以上是dp的思路,不过这样做只能得到70分,其余三个点会tle。
    • 思考一下时间浪费在哪里?
    • 通过dp方程可知时间复杂度为O(n2mk),每一次需要通过枚举来找到∑的值。
    • 优化一下就是利用前缀和的思想,每次用t数组记录∑的值,这样可以优化到O(nmk),,时间复杂度上比较理想。
    • 但是还是无法A掉该题,只能得90分,因为空间炸了。如果开1000*200*200*2的数组,大概需要300MB的空间。。。。
    • 不难发现方程里只有i,i-1在被调用,以前的空间都已经失效了,所以就用滚动数组吧。
    • 空间和时间都可以符合本题的要求,可以得到100分。
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #define mod 1000000007
     5 using namespace std;
     6 
     7 int n,m,K;
     8 char s[1005],ss[1005];
     9 long long f[2][1005][250];
    10 long long t[2][1005][250];
    11 long long ans;
    12 
    13 int main() {
    14     scanf("%d%d%d",&n,&m,&K);
    15     scanf("%s%s",s+1,ss+1);
    16     f[0][0][0]=t[0][0][0]=1;
    17     for (int i=0; i<=n; i++) t[0][i][0]=1;
    18     for (int k=1; k<=K; k++) {
    19         memset(f[k&1],0,sizeof f[k&1]);
    20         memset(t[k&1],0,sizeof t[k&1]);
    21         for (int i=1; i<=n; i++) {
    22             for (int j=1; j<=m; j++) {
    23                 if (s[i]==ss[j]) {
    24                     f[k&1][i][j]=(long long)t[(k+1)&1][i-1][j-1];
    25                     if (s[i-1]==ss[j-1]) f[k&1][i][j]=(long long)(f[k&1][i][j]+f[k&1][i-1][j-1]+mod)%mod;
    26                 }
    27                 t[k&1][i][j]=(long long)((t[k&1][i][j]+f[k&1][i][j]+mod)%mod+t[k&1][i-1][j]+mod)%mod;
    28             }
    29         }
    30     }
    31     for (int i=1; i<=n; i++) ans=(long long)((ans+f[K&1][i][m]+mod)%mod);
    32     printf("%lld",ans);
    33     return 0;
    34 }
  • 相关阅读:
    JavaScript框架设计 一、种子模块
    一、微服务架构概述(spring cloud与docker学习)
    C++之socket编程
    原定于6日的维护延期
    网站将于8月5日或6日进行维护
    JAVA日报
    JAVA日报
    JAVA日报
    JAVA日报
    JAVA日报
  • 原文地址:https://www.cnblogs.com/zoewilly/p/6047780.html
Copyright © 2011-2022 走看看