zoukankan      html  css  js  c++  java
  • SVM算法核函数的选择


    SVM支持向量机,一般用于二分类模型,支持线性可分和非线性划分。SVM中用到的核函数有线性核'linear'、多项式核函数pkf以及高斯核函数rbf。

    当训练数据线性可分时,一般用线性核函数,直接实现可分;

    当训练数据不可分时,需要使用核技巧,将训练数据映射到另一个高维空间,使再高维空间中,数据可线性划分,

    但需要注意的是,若样本n和特征m很大时,且特征m>>n时,需要用线性核函数,因为此时考虑高斯核函数的映射后空间维数更高,更复杂,也容易过拟合,此时使用高斯核函数的弊大于利,选择使用线性核会更好;

    若样本n一般大小,特征m较小,此时进行高斯核函数映射后,不仅能够实现将原训练数据再高维空间中实现线性划分,而且计算方面不会有很大的消耗,因此利大于弊,适合用高斯核函数;

    若样本n很大,但特征m较小,同样难以避免计算复杂的问题,因此会更多考虑线性核。

  • 相关阅读:
    第一次博客园作业
    弹性布局/流动式布局
    元素在网页或视口上位置的相关问题求解
    element
    给body设置高度
    盒模型宽高的获取和设置
    选择器
    变量、作用域和内存问题
    js之捕捉冒泡和事件委托
    transition transform animate的使用
  • 原文地址:https://www.cnblogs.com/zongfa/p/11353155.html
Copyright © 2011-2022 走看看