Fourier级数
函数的Fourier级数的展开
Euler--Fourier公式
我们探讨这样一个问题:
假设(f(x)=frac{a_{0}}{2}+sum_{n=1}^{infty}a_{k}coskt+b_{k}sinkt)
Euler--Fourier公式:
(a_{0}=frac{1}{pi} int_{-pi}^{pi} f(x) dx)
(a_{n}=frac{1}{pi} int_{-pi}^{pi} f(x) cos n x mathrm{d} x, quad n=0,1,2, cdots)
(b_{n}=frac{1}{pi} int_{-x}^{pi} f(x) sin n x mathrm{d} x, quad n=1,2, cdots)
[int_{-pi}^{pi}cosmx=0
]
[int_{-pi}^{pi}sinmx=0
]
[int_{-pi}^{pi}sinnxcosmx=0
]
[int_{-pi}^{pi}cosnxcosmx=0(n
eq m)
]
[int_{-pi}^{pi}cosnxcosmx=pi(n = m)$$(n=m时,cos0x=1,$
ightarrow frac{1}{2} int_{-pi}^{pi}1dx$)
$$int_{-pi}^{pi}sinnxcosmx=pi(n = m)]
利用三角公式:
[cosmtcosnt=frac{1}{2}[cos(m-n)t+cos(m+n)t]
]
正弦级数和余弦级数
注意奇函数如果在零点有定义的话,(f(0)=0)
(f(x)=frac{a_{0}}{2}+sum_{n=1}^{infty} (a_{n}cosnx+b_{n}sinnx))
正弦级数表达式:$$f(x)=sum_{n=1}^{infty}b_{n}sinnx$$
同样余弦级数:$$f(x)=frac{a_{0}}{2}+sum_{n=0}^{infty}a_{n}cosnx$$
Fourier级数习题:
1.1f(t)=(frac{A}{2}(sint+|sint|))展开的Fourier级数
((int_{-pi}^{pi}|sint|dt=4))
(a_{0}=4 imes frac{A}{2})
(a_{n})=
(int_{-pi}^{pi}|sint|cosntdt)
这里我们操作一下:$$a_{n}=int_{0}^{pi}sintcosntdt$$
学会利用三角变换:
[sintcosnt=frac{1}{2}[sin(t-nt)+sin(t+nt)]
]
也可以用分部积分法来计算
[frac{1}{n} sin t sin n t igg|_{0}^{pi}+frac{1}{n} int_{0}^{pi} cos t sin n t
]
[frac{n^{2}-1}{n^{2}} int_{0}^{pi} sin t cos n t d t=left.frac{1}{n} sin t sin n t
ight|_{0} ^{pi}+left.frac{1}{n} cos t cos n t
ight|_{0} ^{pi}
]
(a_{n}=int_{0}^{pi}sintcosntdt=-frac{2(cos(npi+1))}{n^2-1})}(详细写的话,分为奇数和偶数)
[int_{0}^{pi}sintcosntdt=-frac{2(cos(npi+1))}{n^2-1}
]
(b_{n})=
{(int_{-pi}^{pi}sintsinntdt+|sint|sinntdt)}
注意(int_{-pi}^{pi}|sint|sinntdt)=0(偶函数)
[int_{-pi}^{pi}sintsinntdt=-frac{2sin(pi n)}{n^2 -1}$$(n分奇偶数来考虑)
f(t)=$A|sin t|$
与1的类似:注意$a_{n}=0$
$$ f(x)=left{
egin{aligned}
1 quad xin[-pi,0),\
0 quad xin[0,pi)
end{aligned}
ight.
$$的Fourier级数
$f(x)=sgn(x),x in(-pi,pi)$展开成Fourier级数
sgn(x)为奇函数 $a_{0}=0,a_{n}=0$
利用正弦公式$b_{n}=int_{-pi}^{0}-sin(nt)dt=frac{1-cos(pi n)}{n}$
$f(x)=frac{x^{2}}{2}-pi^{2}$
$f(x)$为偶函数,考虑$a_{n}=frac{1}{pi} int_{-pi}^{pi}f(x)cosnxdx$\
$frac{1}{pi} int_{-pi}^{pi}(frac{x^{2}}{2}-pi^{2})cosnxdx$
先考虑$int_{-pi}^{pi} pi^{2}cosnxdx$,由于对应的原函数sinnx里面$sin npi =0$\
接下来我们考虑$int_{-pi}^{pi} frac{x^{2}}{2}cosnxdx$
我们利用分部积分:$sinnx frac{x^2}{2} igg|_{-pi}^{pi}-frac{1}{n}frac{1}{pi}int_{-pi}^{pi}xsinnxdx$
$int_{-pi}^{pi}xsinnxdx$我们采用分部积分$-frac{1}{n}xcosnx igg|_{pi}^{pi}=frac{2cosnx}{n^{2}}$
$$ f(x)=left{
egin{aligned}
ax quad xin[-pi,0),\
bx quad xin[0,pi)
end{aligned}
ight.
]
正弦级数与余弦级数的习题:
(f(x)=x(x in[0,pi]))分别展开成正弦级数和余弦级数
正弦级数:
(f(x)=e^{-2x},xin[0,pi])
(b_{n}=) {(int_{0}^{pi}e^{-2x}sinnx dx)}
=(frac{n-e^{-2 pi}ncos(pi n)}{n^2+4})
[ f(x)=left{
egin{aligned}
cosfrac{pi x}{2} quad xin[0,1),\
0 quad xin[1,2]
end{aligned}
ight.
]
余弦级数:
(f(x)=e^{x},x in [0,pi])
(f(x)=x-frac{pi}{2}+|x-frac{pi}{2}|,x in [0,pi])
Fourier级数的收敛判别法
Fourier级数的性质