zoukankan      html  css  js  c++  java
  • 经济增长模型

    Douglas生产函数

    (Q(t),K(t) ,L(t))分别表示某一地区或部门在时刻t的产值、资金和劳动
    力,它们的关系可以一般地记作
    (Q(t)=F(K(t), L(t)))
    (z=Q / L, quad y=K / L)
    (z=c g(y), quad g(y)=y^{a}, quad 0<alpha<1)
    (Q=c K^{alpha} L^{1-alpha}, quad 0<alpha<1)(Cobb-Douglas生产函数)

    (frac{partial Q}{partial K}, frac{partial Q}{partial L}>0, quad frac{partial^{2} Q}{partial K^{2}}, frac{partial^{2} Q}{partial L^{2}}<0)
    (frac{K Q_{K}}{Q}=alpha, quad frac{L Q_{L}}{Q}=1-alpha, quad K Q_{K}+L Q_{L}=Q)
    (alpha)是资金在产值中占有的份额,(1-alpha)是劳动力在产值中占有的份额. 于是(alpha)的大小直接反映了资金、劳动力二者对于创造产值的轻重
    关系
    (Q=c K^{alpha} L^{eta}, quad 0<alpha, eta<1)

    投资增长率与产值成正比,比例系数(lambda)>0, 即用一定比例扩大再生产;

    劳动力的相对增长率为常数(mu), ,(mu) 可以是负数,表示劳动力减少.
    (frac{mathrm{d} L}{mathrm{d} t}=mu L)

    (frac{mathrm{d} K}{mathrm{d} t}=lambda f_{0} L y^{alpha})
    (frac{mathrm{d} K}{mathrm{d} t}=L frac{mathrm{d} y}{mathrm{d} t}+mu L y)
    ( ightarrowfrac{mathrm{d} y}{mathrm{d} t}+mu y=f_{0} lambda y^{alpha})
    ( ightarrow y(t)=left(frac{f_{0} lambda}{mu}+left(y_{0}^{1-alpha}-frac{f_{0} lambda}{mu} ight) mathrm{e}^{-(1-alpha) mu t} ight)^{1 / 1-alpha})
    (y_{0}=K_{0} / L_{0}, Q_{0}=f_{0} K_{0}^{alpha} L_{0}^{1-alpha}, dot{K}_{0}=lambda Q_{0})

    [ ightarrow y(t)=left{frac{f_0 lambda}{mu}left[1-left(1-mu frac{K_{0}}{dot{K}_{0}} ight) e^{-(1-alpha) mu t} ight] ight}^{frac{1}{1-alpha}} ]

    (frac{d y}{d t}+mu y=c lambda y^{alpha}(0<alpha<1))
    解析解:

    [y(t)=left{frac{c lambda}{mu}left[1-left(1-mu frac{K_{0}}{dot{K}_{0}} ight) e^{-(1-alpha) mu t} ight] ight}^{frac{1}{1-alpha}} ]

    Bernoulli方程

    (frac{mathrm{d} y}{mathrm{d} x}+p(x) y=q(x) y^{n})
    两边除以(y^n)
    (z=y^{1-n})
    (frac{mathrm{d} z}{mathrm{d} x}+(1-n) p(x) z=(1-n) q(x))

    (frac{mathrm{d} y}{mathrm{d} t}+mu y=f_{0} lambda y^{alpha})
    ( ightarrowfrac{mathrm{d} y}{mathrm{d} t}*y^{-alpha}+mu y^{1-alpha}=f_{0} lambda)
    (y^{1-alpha}=z)
    (frac{dz}{dt}+mu*z=f_{0} lambda)

  • 相关阅读:
    Codeforces Round #359 (Div. 2) C. Robbers' watch 鸽巢+stl
    poj 3616 Milking Time dp
    UVA 11401
    UVA 11806 Cheerleaders dp+容斥
    Educational Codeforces Round 4 D. The Union of k-Segments 排序
    Codeforces Round #337 (Div. 2) C. Harmony Analysis 数学
    Codeforces Round #337 (Div. 2) B. Vika and Squares 水题
    Codeforces Round #337 (Div. 2) A. Pasha and Stick 水题
    POJ2402/UVA 12050 Palindrome Numbers 数学思维
    UVA 11076 Add Again 计算对答案的贡献+组合数学
  • 原文地址:https://www.cnblogs.com/zonghanli/p/12578211.html
Copyright © 2011-2022 走看看