zoukankan      html  css  js  c++  java
  • 复变函数积分

    [1+2 z+3 z^{2}+cdots+n z^{n-1}=0 ]

    (Bleft(0,r ight))

    [int_{-infty}^{+infty} frac{P(x)}{Q(x)} mathrm{d} x=2 pi mathrm{i} sum_{j=1}^{n} operatorname{Res}left(frac{P(z)}{Q(z)}, z_{j} ight) ]

    [int_{0}^{infty} frac{1+x^{2}}{1+x^{4}} d x ]

    [int_{0}^{frac{2}{pi}} frac{1}{a+sin^{2} heta} d heta ]

    [int_{|z |=R} z^{n} log frac{z-a}{z-b} d z quad(a eq b, quad R>max (|a|,|b|}) ]

    The same statement holds for any (a, b in mathbb{C}). (Note that since (f) is an entire function, (int_{a}^{b} f(z) d z) is independent of path, and hence well defined.
    Proof:
    Fix an arbitrary positive number (R>max {|a|,|b|} .) It is easy to check that when (|w|,left|w_{0} ight|<R) (each branch of ) (log frac{z-w}{z-w_{0}}) is a well defined holomorphic function of (z) on ({|z| geq R},) so
    (g_{w_{0}}(w):=frac{1}{2 pi i} int_{|z|=R} f(z) log frac{z-w}{z-w_{0}} d z)
    defines a holomorphic function of (w) on ({|w|<R} .) Moreover, (g_{w_{0}}left(w_{0} ight)=0) and

    [egin{array}{c} F(z)=int_{alpha}^{eta} varphi(z, t) mathrm{d} t \ F^{prime}(z)=int_{alpha}^{eta} frac{partial varphi(z, t)}{partial z} mathrm{d} t end{array}]

    (g_{w_{0}}^{prime}(w)=-frac{1}{2 pi i} int_{|z|=R} frac{f(z)}{z-w} d z=-f(w))
    That is to say,
    (g_{w_{0}}(w)=-int_{w_{0}}^{w} f(z) d z)
    Letting (w_{0}=a, w=b,) the conclusion follows.

    isolated singularity:$$frac{z{3}+z{2}+2}{zleft(z{2}-1 ight){2}}$$

    (z^{3}+z^{2}+2)(z*(z^{2}-1)^{2}
    Series of (z^{3}+z^{2}+2)(z*(z^{2}-1)^{2}) at z=-1
    residue of (z^{3}+z^{2}+2)(z*(z^{2}-1)^{2}) at z=0
    residue of (z^{3}+z^{2}+2)(z*(z^{2}-1)^{2}) at z=1
    residue of (z^{3}+z^{2}+2)(z*(z^{2}-1)^{2}) at z=infty
    residue of (z^{3}+z^{2}+2)(z*(z^{2}-1)^{2}) at z=-1
    

    [operatorname{Res}_{z=0}left(frac{z^{3}+z^{2}+2}{zleft(z^{2}-1 ight)^{2}} ight)=2 ]

    [operatorname{Res}_{z=1}left(frac{z^{3}+z^{2}+2}{zleft(z^{2}-1 ight)^{2}} ight)=-frac{3}{4} ]

    [operatorname{Res}_{z=infty}left(frac{z^{3}+z^{2}+2}{zleft(z^{2}-1 ight)^{2}} ight)=0 ]

    [operatorname{Res}_{z=-1}left(frac{z^{3}+z^{2}+2}{zleft(z^{2}-1 ight)^{2}} ight)=-frac{5}{4} ]

    the result


    [z^3cosfrac{1}{z-2} ]

    residue of z^3*cos(1/(z-2)) at infinity
    

    [operatorname{Res}_{z=0}left(z^{3} cos left(frac{1}{z-2} ight) ight)=0 ]

    [operatorname{Res}_{z=infty}left(z^{3} cos left(frac{1}{z-2} ight) ight)=frac{143}{24} ]

    分式线性变换:

    [B(0,1) ightarrow B(0,1) ]

    [frac{1}{2}, 2, frac{5}{4}+frac{3}{4} i ightarrow frac{1}{2},2,infty ]

  • 相关阅读:
    HDU 4611 Balls Rearrangement 数学
    Educational Codeforces Round 11 D. Number of Parallelograms 暴力
    Knockout.Js官网学习(简介)
    Entity Framework 关系约束配置
    Entity Framework Fluent API
    Entity Framework DataAnnotations
    Entity Framework 系统约定配置
    Entity Framework 自动生成CodeFirst代码
    Entity Framework CodeFirst数据迁移
    Entity Framework CodeFirst尝试
  • 原文地址:https://www.cnblogs.com/zonghanli/p/13125927.html
Copyright © 2011-2022 走看看