zoukankan      html  css  js  c++  java
  • 期末复习--实用回归分析

    期末复习--实用回归分析

    [y=left[egin{array}{c} y_{1} \ y_{2} \ vdots \ y_{n} end{array} ight], X=left[egin{array}{cccc} 1 & x_{11} & cdots & x_{1 p} \ 1 & x_{21} & cdots & x_{2 p} \ vdots & vdots & & vdots \ 1 & x_{n 1} & cdots & x_{n p} end{array} ight], epsilon=left[egin{array}{c} epsilon_{1} \ epsilon_{2} \ vdots \ epsilon_{n} end{array} ight], eta=left[egin{array}{c} eta_{0} \ eta_{1} \ vdots \ eta_{p} end{array} ight] ]

    [oldsymbol{y}=oldsymbol{X} oldsymbol{eta}+varepsilon ]

    [oldsymbol{X}=left(mathbf{1}, oldsymbol{x}_{1}, ldots, oldsymbol{x}_{p} ight)-- n imes(p+1) ]

    [varepsilon=left(varepsilon_{1}, ldots, varepsilon_{n} ight)^{prime} ]

    Gauss-Markov条件:

    [left{egin{array}{l} Eleft(varepsilon_{i} ight)=0, i=1, ldots, n \ operatorname{Cov}left(varepsilon_{i}, varepsilon_{j} ight)=0, i eq j ; quad operatorname{Var}left(varepsilon_{i} ight)=sigma^{2} end{array} ight. ]

    正态性假设:

    [left{egin{array}{l} varepsilon_{i} sim Nleft(0, sigma^{2} ight), i=1, ldots, n \ varepsilon_{1}, ldots, varepsilon_{n} quad ext { 相互独立 } end{array} ight. ]

    LSE

    [Q(oldsymbol{eta})=(oldsymbol{y}-oldsymbol{X} oldsymbol{eta})^{prime}(oldsymbol{y}-oldsymbol{X} oldsymbol{eta}) ]

    [frac{partial Q(oldsymbol{eta})}{partial oldsymbol{eta}}=-oldsymbol{X}^{prime} 2(oldsymbol{y}-oldsymbol{X} oldsymbol{eta})=-2 oldsymbol{X}^{prime}(oldsymbol{y}-oldsymbol{X} oldsymbol{eta})=0 ]

    [hat{oldsymbol{eta}}=left(oldsymbol{X}^{prime} oldsymbol{X} ight)^{-1} oldsymbol{X}^{prime} oldsymbol{y} ]

    [hat{oldsymbol{y}}=oldsymbol{X} hat{oldsymbol{eta}}=oldsymbol{X}left(oldsymbol{X}^{prime} oldsymbol{X} ight)^{-1} oldsymbol{X}^{prime} oldsymbol{y} stackrel{ ext {def}}{=} oldsymbol{H} oldsymbol{y} ]

    (H=X(X'X)^{-1}X' ightarrow H^2=X(X'X)^{-1}X'*X(X'X)^{-1}X'=X(X'X)^{-1}X'=H)

    ((I_n-H)^2=I_n^2-2HI_n+H^2=I_n-H)

    回归系数估计的最大似然法

    (y sim N(Xeta,sigma^2I_n))

    如果正态分布假设满足,

    [oldsymbol{y}=oldsymbol{X} oldsymbol{eta}+varepsilon, quad varepsilon sim Nleft(mathbf{0}, sigma^{2} oldsymbol{I}_{n} ight) ]

    (oldsymbol{y}) 的概率分布为 (: oldsymbol{y} sim Nleft(oldsymbol{X} oldsymbol{eta}, sigma^{2} oldsymbol{I}_{n} ight),) 这是似然函数为

    [L(oldsymbol{eta})=left(2 pi sigma^{2} ight)^{-n / 2} exp left{-frac{1}{2 sigma^{2}}(oldsymbol{y}-oldsymbol{X} oldsymbol{eta})^{prime}(oldsymbol{y}-oldsymbol{X} oldsymbol{eta}) ight} ]

    对其做“-ln”变换,记为 (ell(oldsymbol{eta}),) 可以证明 (oldsymbol{eta}) 的极大似然估计 (hat{eta}_{M L E}) 与最小二 乘估计等价。而误差项的方差 (sigma^{2}) 的极大似然估计

    [hat{sigma}_{M L E}^{2}=frac{1}{n} S S E=frac{1}{n} oldsymbol{e}^{prime} oldsymbol{e} ]

    EX:

    对于多元线性回归模型: (mathrm{Y}=mathrm{X} eta+varepsilon, varepsilon sim mathrm{N}left(0, sigma^{2} mathrm{I}_{n} ight))
    (1).利用极大似然估计求出 (widehat{sigma^{2}});
    (2).求 (mathrm{E}left(widehat{sigma^{2}} ight))

    (1)如果正态分布假设满足,

    [oldsymbol{y}=oldsymbol{X} oldsymbol{eta}+varepsilon, quad varepsilon sim Nleft(mathbf{0}, sigma^{2} oldsymbol{I}_{n} ight) ]

    (oldsymbol{y}) 的概率分布为 (: oldsymbol{y} sim Nleft(oldsymbol{X} oldsymbol{eta}, sigma^{2} oldsymbol{I}_{n} ight),) 这是似然函数为

    [L(oldsymbol{eta})=left(2 pi sigma^{2} ight)^{-n / 2} exp left{-frac{1}{2 sigma^{2}}(oldsymbol{y}-oldsymbol{X} oldsymbol{eta})^{prime}(oldsymbol{y}-oldsymbol{X} oldsymbol{eta}) ight} ]

    对其做“-ln”变换,记为 (ell(oldsymbol{eta}),) 可以证明 (oldsymbol{eta}) 的极大似然估计 (hat{eta}_{M L E}) 与最小二 乘估计等价。

    [hat{oldsymbol{eta}}=left(oldsymbol{X}^{prime} oldsymbol{X} ight)^{-1} oldsymbol{X}^{prime} oldsymbol{y} ]

    而误差项的方差 (sigma^{2}) 的极大似然估计

    [widehat{sigma^{2}}=frac{SSE}{n} ]

    (2)

    [Eleft(hat{sigma}^{2} ight)=left(frac{n-p-1}{n} ight) frac{SSE}{n-p-1} ]

    偏决定系数

    [egin{array}{l} ext { Model1: } y_{i}=eta_{0}+eta_{1} x_{1 i}+eta_{2} x_{2 i}+varepsilon_{i}, i=1, ldots, n \ ext { Model0 : } y_{i}=eta_{0}+eta_{2} x_{2 i}+varepsilon_{i}, i=1, ldots, n end{array} ]

    [r_{y 1 ; 2}^{2}=frac{operatorname{SSE}left(x_{2} ight)-operatorname{SSE}left(x_{1}, x_{2} ight)}{operatorname{SSE}left(x_{2} ight)} stackrel{?}{=} frac{operatorname{SSR}left(x_{1}, x_{2} ight)-operatorname{SSR}left(x_{2} ight)}{operatorname{SSE}left(x_{2} ight)} ]

    当模型中已有 (x_{1}, ldots, x_{j-1}, x_{j+1}, ldots, x_{p}) 时, (y)(x_{j}) 的偏决定系数为:

    [egin{aligned} r_{y j ;-j}^{2} &=frac{operatorname{SSE}left(x_{1}, ldots, x_{j-1}, x_{j+1}, ldots, x_{p} ight)-operatorname{SSE}left(x_{1}, ldots, x_{p} ight)}{operatorname{SSE}left(x_{1}, ldots, x_{j-1}, x_{j+1}, ldots, x_{p} ight)} \ &=frac{S S R-operatorname{SSR}(-j)}{operatorname{SSE}(-j)} end{aligned} ]

    偏相关系数:

    [r_{j k}=frac{S_{j k}}{sqrt{S_{j j} S_{k k}}} ]

    [r_{12 ; 3, ldots, p}=frac{-Delta_{12}}{sqrt{Delta_{11} Delta_{22}}} ]

    [r_{12 ; 3}=frac{r_{12}-r_{13} r_{23}}{sqrt{left(1-r_{13}^{2} ight)left(1-r_{23}^{2} ight)}} ]

  • 相关阅读:
    Mysql(7) _常用函数
    Mysql(6)_ 帮助的使用
    Mysql(5)_ 基本数据类型-时间
    Mysql(4)_整型和浮点型
    1 HTTP请求头Header及其作用详解
    Java(35) _JDBC批量插入数据二
    Java(34)_ 用JDBC批量向数据库插入语句
    Java(33)_ JDBC指针移动
    Mysql(3)_ Mycat简介
    Mysql(2)_ binlog文件
  • 原文地址:https://www.cnblogs.com/zonghanli/p/14247102.html
Copyright © 2011-2022 走看看