费大马定理:
奇偶数列法则:
经典例题:HDU——6441
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
1 #include <bits/stdc++.h> 2 #include <time.h> 3 #include <set> 4 #include <map> 5 #include <stack> 6 #include <cmath> 7 #include <queue> 8 #include <cstdio> 9 #include <string> 10 #include <vector> 11 #include <cstring> 12 #include <utility> 13 #include <cstring> 14 #include <iostream> 15 #include <algorithm> 16 #include <list> 17 using namespace std; 18 //cout<<setprecision(10)<<fixed; 19 #define eps 1e-6 20 #define PI acos(-1.0) 21 #define lowbit(x) ((x)&(-x)) 22 #define zero(x) (((x)>0?(x):-(x))<eps) 23 #define mem(s,n) memset(s,n,sizeof s); 24 #define ios {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);} 25 typedef long long ll; 26 typedef unsigned long long ull; 27 const int maxn=1e6+5; 28 const ll Inf=0x7f7f7f7f7f7f7f; 29 const ll mod=1e6+3; 30 //const int N=3e3+5; 31 bool isPowerOfTwo(int n) { return n > 0 && (n & (n - 1)) == 0; }//判断一个数是不是 2 的正整数次幂 32 int modPowerOfTwo(int x, int mod) { return x & (mod - 1); }//对 2 的非负整数次幂取模 33 int getBit(int a, int b) { return (a >> b) & 1; }// 获取 a 的第 b 位,最低位编号为 0 34 int Max(int a, int b) { return b & ((a - b) >> 31) | a & (~(a - b) >> 31); }// 如果 a>=b,(a-b)>>31 为 0,否则为 -1 35 int Min(int a, int b) { return a & ((a - b) >> 31) | b & (~(a - b) >> 31); } 36 ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;} 37 ll lcm(ll a, ll b) {return a / gcd(a, b) * b;} 38 int Abs(int n) { 39 return (n ^ (n >> 31)) - (n >> 31); 40 /* n>>31 取得 n 的符号,若 n 为正数,n>>31 等于 0,若 n 为负数,n>>31 等于 -1 41 若 n 为正数 n^0=n, 数不变,若 n 为负数有 n^(-1) 42 需要计算 n 和 -1 的补码,然后进行异或运算, 43 结果 n 变号并且为 n 的绝对值减 1,再减去 -1 就是绝对值 */ 44 } 45 ll binpow(ll a, ll b) { 46 ll res = 1; 47 while (b > 0) { 48 if (b & 1) res = res * a%mod; 49 a = a * a%mod; 50 b >>= 1; 51 } 52 return res%mod; 53 } 54 void extend_gcd(ll a,ll b,ll &x,ll &y) 55 { 56 if(b==0) { 57 x=1,y=0; 58 return; 59 } 60 extend_gcd(b,a%b,x,y); 61 ll tmp=x; 62 x=y; 63 y=tmp-(a/b)*y; 64 } 65 ll mod_inverse(ll a,ll m) 66 { 67 ll x,y; 68 extend_gcd(a,m,x,y); 69 return (m+x%m)%m; 70 } 71 ll eulor(ll x) 72 { 73 ll cnt=x; 74 ll ma=sqrt(x); 75 for(int i=2;i<=ma;i++) 76 { 77 if(x%i==0) cnt=cnt/i*(i-1); 78 while(x%i==0) x/=i; 79 } 80 if(x>1) cnt=cnt/x*(x-1); 81 return cnt; 82 } 83 int main() 84 { 85 int t,n,a,b,c; 86 scanf("%d",&t); 87 while(t--) 88 { 89 scanf("%d%d",&n,&a); 90 if(n==1) 91 { 92 printf("%d %d ",a+1,a+a+1); 93 continue; 94 } 95 else if(n==2) 96 { 97 if(a%2==0) 98 { 99 b=(a/2)*(a/2)-1; 100 c=(a/2)*(a/2)+1; 101 printf("%d %d ",b,c); 102 } 103 else if(a%2) 104 { 105 b=(a/2)*(a/2)+(a/2+1)*(a/2+1)-1; 106 c=(a/2)*(a/2)+(a/2+1)*(a/2+1); 107 printf("%d %d ",b,c); 108 } 109 continue; 110 } 111 puts("-1 -1"); 112 } 113 return 0; 114 }