zoukankan      html  css  js  c++  java
  • O(n)线性空间的迷宫生成算法

    之前所有的迷宫生成算法,空间都是O(mn),时间同样是O(mn),时间上已经不可能更优化,

    于是,我就从空间优化上着手,研究一个仅用O(n)空间的生成算法。

    我初步的想法是,每次生成一行,生成后立即输出,而其连通性的信息用并查集保存。

    然而这时却遇到阻力:不可能简单保存连通性信息就能完成。

    因为通过上一行的信息去生成下一行的时候,仅靠连通性信息你无法知道你能不能结束当前路径上的连结,

    也就是说你不能判断你能不能生成一个死胡同。

     

    后来想了一下,改进了一下并查集,让它的父结点多保存一个信息:当前行与本结点连通的格子数

    看这个例子:

     ━┳━━┳━━┳━━━━┳━━┳━━┳┓
    ┣┓┗━┃┃━━┛━━━┓┃┃┃┗┓┃┃┃
    ┃┗┳━┫┗━━┓┏━━┫┏┛┣━┃┃┃┃

     1 1  1 1 2 2 2 2 3 6 6 6 3 3 3 3 3 4 4 5

    相同数字的表示它们连通(连向同一个父结点),比如3那个,当前行与本结点连通的格子数=6

    也就是3出现的次数。

    在生成下一行的时候,每生成一个格子,就得同时更新连通格子数的值,以保证不会生成环路和死路

    参考源代码:

     

    #include <iostream>
    #include <ctime>
    using namespace std;

    #define next(n,s) ((n)=(n)%((s)-1)+1)
    int fset_size;
    struct data
    {
        int parent;
        int level;
        int sum;
    }*fset;
    int fset_pt = 1, fdeep;

    int try_alloc(int level)
    {
        if (fset[fset_pt].level < level)
        {
            return fset_pt;
        }
        int lpt = fset_pt;
        for (next(fset_pt, fset_size); fset_pt!=lpt; next(fset_pt, fset_size))
        {
            if (fset[fset_pt].level < level)
            {
                return fset_pt;
            }
        }
        return 0;
    }

    int reg_fset(int level)
    {
        int lpt = fset_pt;
        fset[fset_pt].level = level;
        fset[fset_pt].parent = 0;
        fset[fset_pt].sum = 1;
        next(fset_pt, fset_size);
        return lpt;
    }

    int get_parent(int id)
    {
        int d = id;
        for (fdeep=0; fset[id].parent>0; ++fdeep)
            id = fset[id].parent;
        if (d != id) fset[d].parent = id;
        return id;
    }

    void insert(int a, int b)
    {
        int pa = get_parent(a), da = fdeep;
        int pb = get_parent(b), db = fdeep;
        if (pa==pb)
        {
        }
        else if (da<=db)
        {
            fset[pa].parent = pb;
            fset[pb].level = max(fset[pa].level, fset[pb].level);
            fset[pb].sum += fset[pa].sum-1;
        }
        else
        {
            fset[pb].parent = pa;
            fset[pa].level = max(fset[pa].level, fset[pb].level);
            fset[pa].sum += fset[pb].sum-1;
        }
    }

    int is_connect(int a, int b)
    {
        if (a==b || get_parent(a)==get_parent(b))
            return 1;
        return 0;
    }

    struct tile
    {
        int wall;
        int id;
    };

    char cw[][4]={" ","━","┃","┛","━","━","┗","┻","┃","┓","┃","┫","┏","┳","┣","╋"};

    int Gen(int w, int h)
    {
        int x,y,lx,ly,p;
        tile* maze = (tile*)malloc(sizeof(tile)*(w+2));
        fset = (data*)malloc(sizeof(data)*(w*2));
        fset_size = w;
        memset(fset, 0, sizeof(data)*(w*2));
        for (x=0; x<=w+1; ++x) maze[x].wall = 7, maze[x].id=0;
        maze[0].wall = 15; maze[w+1].wall = 15;
        for (y=1; y<=h+1; ++y,maze[0].wall = 11,maze[w+1].wall = 14)
        {
            lx = 0; ly = 1; x = 0;
            fset[0].sum = 0;
            p = 15;
            if (lx) p &= ~8;
            if (ly) p &= ~1;
            if (maze[x+1].wall&8) p &= ~4;
            if (is_connect(maze[x].id, maze[x+1].id)) p &= ~2;
            if (y>h) p &= ~8;
            printf(cw[p]);
            p &= 4;
            printf(cw[p]);
            for (x=1; x<=w; ++x)
            {
                int r, _r = 4;
                ly = (maze[x].wall&8);
                int id, dsum = 0;
                if (lx && ly)
                {
                    insert(maze[x-1].id, maze[x].id);
                }
                else if (lx==0 && ly==0)
                {
                    maze[x].id = try_alloc(y);
                    if (maze[x].id==0)
                    {
                        fset_size += w;
                        maze[x].id = try_alloc(y);
                        fset_size -= w;
                    }
                    reg_fset(y+1);
                }
                else if (lx)
                {
                    maze[x].id = maze[x-1].id;
                }
                id = get_parent(maze[x].id);
                if ((maze[x+1].wall&8) && is_connect(maze[x].id, maze[x+1].id)) _r = 2;
                if (y==h && x==w)
                {
                    r = 0;
                }
                else do
                {
                    r = rand() % _r;
                    if ((r&2)==0 && try_alloc(y)==0) r |= 2;
                    if (y>h)
                    {
                        r = 2;
                    }
                    else if (x==w) r &= ~2;
                    if (y==h) r &= ~1;
                    dsum = 0;
                    if ((r & 1) == 0 ) dsum -= 1;
                    if (r & 2) dsum += 1;
                }
                while (y<=h && ((r==0 && (lx==0 && ly==0) || fset[id].sum+dsum<=0 )) );
                maze[x].wall = 0;
                if (ly) maze[x].wall |= 2;
                if (lx)
                {
                    maze[x].wall |= 1;
                }
                lx = (r&2);
                if (lx) maze[x].wall |= 4;
                if (r&1) maze[x].wall |= 8;
                p = 15;
                if (maze[x].wall&4) fset[id].sum += 1;
                if ((maze[x].wall&8)==0) fset[id].sum -= 1, fset[0].sum += 1;
                fset[id].level = y+1;
                if (maze[x].wall&4) p &= ~8;
                if (maze[x].wall&2) p &= ~1;
                if (maze[x+1].wall&8) p &= ~4;
                if (maze[x+1].wall&1) p &= ~2;
                printf(cw[p]);
                p &= 4;
                printf(cw[p]);
            }
            puts("");
            if (y<h)
            {
                for (x=0; x<=w; ++x)
                {
                    if (maze[x].wall&4) printf(cw[0]); else printf(cw[10]);
                    int id = get_parent(maze[x].id);
                    maze[x].id = id;
                    printf(cw[0]);
                }
                puts("");
            }
            else if (y==h)
            {
                for (x=0; x<=w; ++x)
                {
                    if ((maze[x].wall&4) || x==w) printf(cw[0]); else printf(cw[10]);
                    int id = get_parent(maze[x].id);
                    maze[x].id = id;
                    printf(cw[0]);
                }
                puts("");
            }
        }
        free(maze);
        free(fset);
        return 0;
    }
    int main()
    {
        srand((unsigned)time(NULL));
        Gen(15,10);
        return 0;
    }

  • 相关阅读:
    django全文搜索学习心得(一)haystack 篇
    django request get_full_path 中文问题
    django全文搜索学习心得(五) whoosh 精简版
    django全文搜索学习心得(二)solr 篇
    django全文搜索学习心得(四)sphinx篇
    模拟队列
    差分
    模拟栈
    区间合并
    离散化
  • 原文地址:https://www.cnblogs.com/zqifa/p/c-maze-6.html
Copyright © 2011-2022 走看看