观看Tensorflow案例实战视频课程04 常用基本操作
#最好使用float32格式 tf.zeros([3,4],int32)==>[[0,0,0,0],[0,0,0,0],[0,0,0,0]] #'tensor' is [[1,2,3],[4,5,6]] tf.zeros_like(tensor)==>[[0,0,0],[0,0,0]] tf.ones([2,3],int32)==>[[1,1,1],[1,1,1]] #'tensor' is [[1,2,3],[4,5,6]] tf.ones_like(tensor)==>[[1,1,1],[1,1,1]] #Contant 1-D Tensor populated with value list. tensor=tf.constant([1,2,3,4,5,6,7])=>[1 2 3 4 5 6 7] #Constant 2-D tensor populated with scalar value -1. tensor=tf.constant(-1.0,shape=[2,3])=>[[-1. -1. -1.] [-1. -1. -1.]] tf.linspace(10.0,12.0,3,name="linspace")=>[10.0 11.0 12.0] #'start' is 3 #'limit' is 18 #'delta' is 3 tf.range(start,limit,delta)==>[3,6,9,12,15]
norm=tf.random_normal([2,3],mean=-1,stddev=4) #Shuffle the first dimension of a tensor c=tf.constant([[1,2],[3,4],[5,6]]) shuff=tf.random_shuffle(c)#洗牌操作 #Each time we run these ops, different results are generated sess=tf.Session() print(sess.run(norm)) print(sess.run(shuff))
state=tf.Variable(0) new_value=tf.add(state,tf.constant(1))#state+1 update=tf.assign(state,new_value)#state=new_value with tf.Session() as sess: sess.run(tf.global_varies_initializer()) print(sess.run(state)) for _ in range(3): sess.run(update) print(sess.run(state))
#tf.train.Saver w=tf.Variable([[0.5,1.0]]) x=tf.Variable([[2.0],[1.0]]) y=tf.matmul(w,x) init_op=tf.global_varies_initializer() saver=tf.train.Saver() with tf.Session() as sess: sess.run(init_op) #Do some work with the model. #Save the variables to disk. save_path=saver.save(sess,"C://tensorflow//model//test") print("Model saved in file:",save_path)
import numpy as np a=np.zeros((3,3)) ta=tf.convert_to_tensor(a)#numpy格式转为tensorflow格式 with tf.Session() as sess: print(sess.run(ta))
input1=tf.placeholder(tf.float32) input2=tf.placeholder(tf.float32) output=tf.mul(input1,input2) with tf.Session() as sess: print(sess.run([output],feed_dict={input1:[7.],input2:[2.]}))