zoukankan      html  css  js  c++  java
  • 学习进度笔记4

    观看Tensorflow案例实战视频课程04 常用基本操作

    #最好使用float32格式
    tf.zeros([3,4],int32)==>[[0,0,0,0],[0,0,0,0],[0,0,0,0]]
    
    #'tensor' is [[1,2,3],[4,5,6]]
    tf.zeros_like(tensor)==>[[0,0,0],[0,0,0]]
    tf.ones([2,3],int32)==>[[1,1,1],[1,1,1]]
    
    #'tensor' is [[1,2,3],[4,5,6]]
    tf.ones_like(tensor)==>[[1,1,1],[1,1,1]]
    
    #Contant 1-D Tensor populated with value list.
    tensor=tf.constant([1,2,3,4,5,6,7])=>[1 2 3 4 5 6 7]
    
    #Constant 2-D tensor populated with scalar value -1.
    tensor=tf.constant(-1.0,shape=[2,3])=>[[-1. -1. -1.]
                                           [-1. -1. -1.]]
    
    tf.linspace(10.0,12.0,3,name="linspace")=>[10.0 11.0 12.0]
    
    #'start' is 3
    #'limit' is 18
    #'delta' is 3
    tf.range(start,limit,delta)==>[3,6,9,12,15]
    
    norm=tf.random_normal([2,3],mean=-1,stddev=4)
    
    #Shuffle the first dimension of a tensor
    c=tf.constant([[1,2],[3,4],[5,6]])
    shuff=tf.random_shuffle(c)#洗牌操作
    
    #Each time we run these ops, different results are generated
    sess=tf.Session()
    print(sess.run(norm))
    print(sess.run(shuff))
    
    state=tf.Variable(0)
    new_value=tf.add(state,tf.constant(1))#state+1
    update=tf.assign(state,new_value)#state=new_value
    
    with tf.Session() as sess:
        sess.run(tf.global_varies_initializer())
        print(sess.run(state))
        for _ in range(3):
            sess.run(update)
            print(sess.run(state))
    
    #tf.train.Saver
    w=tf.Variable([[0.5,1.0]])
    x=tf.Variable([[2.0],[1.0]])
    y=tf.matmul(w,x)
    init_op=tf.global_varies_initializer()
    saver=tf.train.Saver()
    with tf.Session() as sess:
        sess.run(init_op)
    #Do some work with the model.
    #Save the variables to disk.
        save_path=saver.save(sess,"C://tensorflow//model//test")
        print("Model saved in file:",save_path)
    
    import numpy as np
    a=np.zeros((3,3))
    ta=tf.convert_to_tensor(a)#numpy格式转为tensorflow格式
    with tf.Session() as sess:
        print(sess.run(ta))
    
    input1=tf.placeholder(tf.float32)
    input2=tf.placeholder(tf.float32)
    output=tf.mul(input1,input2)
    with tf.Session() as sess:
        print(sess.run([output],feed_dict={input1:[7.],input2:[2.]}))
  • 相关阅读:
    编译预处理命令define
    共享数据的包含const
    友元类,友元函数
    静态成员static
    this 指针
    构造函数与析构函数
    c++类的基础
    void指针和const指针
    c++基础
    组播的实现
  • 原文地址:https://www.cnblogs.com/zql-42/p/14471979.html
Copyright © 2011-2022 走看看