观看Tensorflow案例实战视频课程14 加载训练好的VGG网络模型
def net(data_path,input_image): layers=( 'conv1_1','relu1_1','conv1_2','relu1_2','pool1', 'conv2_1','relu2_1','conv2_2','relu2_2','pool2', 'conv3_1','relu3_1','conv3_2','relu3_2','conv3_3', 'relu3_3','conv3_4','relu3_4','pool3', 'conv4_1','relu4_1','conv4_2','relu4_2','conv4_3', 'relu4_3','conv4_4','relu4_4','pool4', 'conv5_1','relu5_1','conv5_2','relu5_2','conv5_3', 'relu5_3','conv5_4','relu5_4','pool5', ) data=scipy.io.loadmat(data_path) mean=data['normalization'][0][0][0] mean_pixel=np.mean(mean,axis=(0,1)) weights=data['layers'][0] net={}
cwd=os.getcwd() VGG_PATH=cwd+"/data/imagenet-vgg-verydeep-19.mat" data=scipy.io.loadmat(VGG_PATH) #print(data.keys()) mean=data['normalization'][0][0][0] mean_pixel=np.mean(mean,axis=(0,1)) print(mean_pixel) weights=data['layers'][0] #print(weights) #print(weights[0][0][0][0][0].shape) #conv_1 w print(weights[0][0][0][0][0][0].shape) #conv_1 b print(weights[0][0][0][0][0][1].shape)