zoukankan      html  css  js  c++  java
  • CodeForces 615B Longtail Hedgehog

    题目:

    http://codeforces.com/problemset/problem/615/B

    题意:题目描述很复杂,但实际上很简单。大意就是连续的几个点组成尾巴,要求尾巴的长度乘以尾巴终点的分支数的最大值,其中尾巴要满足的条件是有边相连,且尾巴上节点的编号一定是递增的,终点是最大值。

    我刚开始的想法是,先用邻接表保存这个无向图(矩阵保存不了),在读取边的时候,用一个数组保存每个节点的分支数,然后用深搜,遍历尾巴的最大长度,同时每扩展一个点,用当前长度乘以该点的分支数,并不断更新这个最大值,最后输出。然后各种超时,自己尝试加了些剪枝还是过不了。

    与舍友讨论过后,又有了新的优化思路:

    1. 首先是不用保存无向图,因为尾巴上的节点要求递增,所以只需要保存起点比终点小的有向图即可。
    2. 开一个数组,记录以当前节点为终点的尾巴的最大长度。
    3. 放弃搜索的方式,直接用结构体保存每一条边,然后对边进行排序,再从前往后扫描,对每条边终点的尾巴长度进行更新

    PS:记得用long long

     1 #include<stdio.h>
     2 #include<algorithm>
     3 #define maxn 111111
     4 #define maxm 222222
     5 using namespace std;
     6 struct node{
     7     int u;
     8     int v;
     9 };
    10 node e[maxm];
    11 long long spine[maxm],tail[maxm];
    12 bool cmp(node a,node b){
    13     if(a.u == b.u)
    14         return a.v < b.v;
    15     else
    16         return a.u < b.u;
    17 }
    18 int main(){
    19     int n,m;
    20     scanf("%d%d",&n,&m);
    21     int u,v;
    22     for(int i = 1;i<=m;i++){
    23         scanf("%d%d",&u,&v);
    24         e[i].u = min(u,v);
    25         e[i].v = max(u,v);
    26         spine[u]++;
    27         spine[v]++;
    28     }
    29     sort(e+1,e+1+m,cmp);
    30     for(int i = 1;i<=m;i++){
    31         //这里要取max,因为有可能一个节点同时是两个尾巴的终点 
    32         tail[e[i].v] = max(tail[e[i].u]+1,tail[e[i].v]);
    33     }
    34     long long ans = 0;
    35     for(int i = 1;i<=n;i++)
    36         ans = max(ans,(tail[i]+1)*spine[i]);//要加1,因为初始tail数组都是0,没有算上起始点 
    37     printf("%I64d
    ",ans);
    38 } 
  • 相关阅读:
    神经网络回顾-感知机
    遗传算法杂记
    差分进化算法DE和粒子群算法PSO
    遗传算法GA
    Caffe学习 五 conv_layer与im2col
    Selenium
    Selenium
    Selenium
    Selenium
    Selenium
  • 原文地址:https://www.cnblogs.com/zqy123/p/5337781.html
Copyright © 2011-2022 走看看